Your browser doesn't support javascript.
loading
Computed tomography-based prediction of pancreatitis following biliary metal stent placement with the convolutional neural network.
Hamada, Tsuyoshi; Yasaka, Koichiro; Nakai, Yousuke; Fukuda, Rintaro; Hakuta, Ryunosuke; Ishigaki, Kazunaga; Kanai, Sachiko; Noguchi, Kensaku; Oyama, Hiroki; Saito, Tomotaka; Sato, Tatsuya; Suzuki, Tatsunori; Takahara, Naminatsu; Isayama, Hiroyuki; Abe, Osamu; Fujishiro, Mitsuhiro.
Afiliação
  • Hamada T; Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Yasaka K; Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.
  • Nakai Y; Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Fukuda R; Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Hakuta R; Department of Endoscopy and Endoscopic Surgery, The University of Tokyo Hospital, Tokyo, Japan.
  • Ishigaki K; Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Kanai S; Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Noguchi K; Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Oyama H; Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Saito T; Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Sato T; Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Suzuki T; Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Takahara N; Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Isayama H; Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Abe O; Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Fujishiro M; Department of Gastroenterology, Graduate School of Medicine, Juntendo University, Tokyo, Japan.
Endosc Int Open ; 12(6): E772-E780, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38904060
ABSTRACT
Background and study aims Pancreatitis is a potentially lethal adverse event of endoscopic transpapillary placement of a self-expandable metal stent (SEMS) for malignant biliary obstruction (MBO). Deep learning-based image recognition has not been investigated in predicting pancreatitis in this setting. Patients and methods We included 70 patients who underwent endoscopic placement of a SEMS for nonresectable distal MBO. We constructed a convolutional neural network (CNN) model for pancreatitis prediction using a series of pre-procedure computed tomography images covering the whole pancreas (≥ 120,960 augmented images in total). We examined the additional effects of the CNN-based probabilities on the following machine learning models based on clinical parameters logistic regression, support vector machine with a linear or RBF kernel, random forest classifier, and gradient boosting classifier. Model performance was assessed based on the area under the curve (AUC) in the receiver operating characteristic analysis, positive predictive value (PPV), accuracy, and specificity. Results The CNN model was associated with moderate levels of performance metrics AUC, 0.67; PPV, 0.45; accuracy, 0.66; and specificity, 0.63. When added to the machine learning models, the CNN-based probabilities increased the performance metrics. The logistic regression model with the CNN-based probabilities had an AUC of 0.74, PPV of 0.85, accuracy of 0.83, and specificity of 0.96, compared with 0.72, 0.78, 0.77, and 0.96, respectively, without the probabilities. Conclusions The CNN-based model may increase predictability for pancreatitis following endoscopic placement of a biliary SEMS. Our findings support the potential of deep learning technology to improve prognostic models in pancreatobiliary therapeutic endoscopy.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article