Your browser doesn't support javascript.
loading
Proteomics and lipidomic analysis reveal dysregulated pathways associated with loss of sacsin.
Galatolo, Daniele; Rocchiccioli, Silvia; Di Giorgi, Nicoletta; Dal Canto, Flavio; Signore, Giovanni; Morani, Federica; Ceccherini, Elisa; Doccini, Stefano; Santorelli, Filippo Maria.
Afiliação
  • Galatolo D; Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy.
  • Rocchiccioli S; Institute of Clinical Physiology, National Research Council, Pisa, Italy.
  • Di Giorgi N; Institute of Clinical Physiology, National Research Council, Pisa, Italy.
  • Dal Canto F; Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy.
  • Signore G; Institute of Clinical Physiology, National Research Council, Pisa, Italy.
  • Morani F; Department of Biology, University of Pisa, Pisa, Italy.
  • Ceccherini E; The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.
  • Doccini S; Institute of Clinical Physiology, National Research Council, Pisa, Italy.
  • Santorelli FM; Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy.
Front Neurosci ; 18: 1375299, 2024.
Article em En | MEDLINE | ID: mdl-38911600
ABSTRACT

Introduction:

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare incurable neurodegenerative disease caused by mutations in the SACS gene, which codes for sacsin, a large protein involved in protein homeostasis, mitochondrial function, cytoskeletal dynamics, autophagy, cell adhesion and vesicle trafficking. However, the pathogenic mechanisms underlying sacsin dysfunction are still largely uncharacterized, and so attempts to develop therapies are still in the early stages.

Methods:

To achieve further understanding of how processes are altered by loss of sacsin, we used untargeted proteomics to compare protein profiles in ARSACS fibroblasts versus controls.

Results:

Our analyses confirmed the involvement of known biological pathways and also implicated calcium and lipid homeostasis in ARSACS skin fibroblasts, a finding further verified in SH-SY5Y SACS -/- cells. Validation through mass spectrometry-based analysis and comparative quantification of lipids by LC-MS in fibroblasts revealed increased levels of ceramides coupled with a reduction of diacylglycerols.

Discussion:

In addition to confirming aberrant Ca2+ homeostasis in ARSACS, this study described abnormal lipid levels associated with loss of sacsin.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article