Your browser doesn't support javascript.
loading
Aflatoxins in Peanut (Arachis hypogaea): Prevalence, Global Health Concern, and Management from an Innovative Nanotechnology Approach: A Mechanistic Repertoire and Future Direction.
Sultana, Tahira; Malik, Khafsa; Raja, Naveed Iqbal; Mashwani, Zia-Ur-Rehman; Hameed, Asma; Ullah, Riaz; Alqahtani, Ali S.
Afiliação
  • Sultana T; Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan.
  • Malik K; Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan.
  • Raja NI; Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan.
  • Mashwani ZU; Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan.
  • Hameed A; Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan.
  • Ullah R; Medicinal Aromatic and Poisonous Plants Research Center College of Pharmacy King Saud University, Riyadh 11451, Saudi Arabia.
  • Alqahtani AS; Medicinal Aromatic and Poisonous Plants Research Center College of Pharmacy King Saud University, Riyadh 11451, Saudi Arabia.
  • Sohail; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
ACS Omega ; 9(24): 25555-25574, 2024 Jun 18.
Article em En | MEDLINE | ID: mdl-38911815
ABSTRACT
Arachis hypogaea is the most significant oilseed nutritious legume crop in agricultural trade across the world. It is recognized as a valued crop for its contributions to nourishing food, as a cooking oil, and for meeting the protein needs of people who are unable to afford animal protein. Currently, its production, marketability, and consumption are hindered because of Aspergillus species infection that consequently contaminates the kernels with aflatoxins. Regarding health concerns, humans and animals are affected by acute and chronic aflatoxin toxicity and millions of people are at high risk of chronic levels. Most methods used to store peanuts are traditional and serve effectively for short-term storage. Now the question for long-term storage has been raised, and this promptly finds potential approaches to the issue. It is imperative to reduce the aflatoxin levels in peanuts to a permissible level by introducing detoxifying innovations. Most of the detoxification reports mention physical, chemical, and biological techniques. However, many current approaches are impractical because of time consumption, loss of nutritional quality, or weak detoxifying efficiency. Therefore, it is crucial to investigate practical, economical, and green methods to control Aspergillus flavus that address current global food security problems. Herein, a green and economically revolutionary way is a nanotechnology that has demonstrated its potential to connect farmers to markets, elevate international marketability, improve human and animal health conditions, and enhance food quality and safety by the management of fungal diseases. Due to the antimicrobial potential of nanoparticles, they act as nanofungicides and have an incredible role in the control of aflatoxins. Nanoparticles have ultrasmall sizes and therefore penetrate the fungal body and invade the pathogen machinery, leading to fungal cell death by ROS production, mutation in DNA, disruption of organelles, and membrane leakage. This is the first mechanistic overview that unveils a comprehensive insight into aflatoxin contamination in peanuts, its prevalence, health effects, and management in addition to nanotechnological interventions that serve as a triple defense approach to detoxify aflatoxins. The optimum use of nanofungicides ensures food safety and the development of goals, especially "zero hunger".

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article