Your browser doesn't support javascript.
loading
Microbial consortium assembly and functional analysis via isotope labelling and single-cell manipulation of polycyclic aromatic hydrocarbon degraders.
Li, Jibing; Luo, Chunling; Cai, Xixi; Zhang, Dayi; Guan, Guoqing; Li, Bei; Zhang, Gan.
Afiliação
  • Li J; State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
  • Luo C; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, China.
  • Cai X; State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
  • Zhang D; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, China.
  • Guan G; Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
  • Li B; Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, China.
  • Zhang G; College of New Energy and Environment, Jilin University, Changchun 130021, China.
ISME J ; 18(1)2024 Jan 08.
Article em En | MEDLINE | ID: mdl-38913500
ABSTRACT
Soil microbial flora constitutes a highly diverse and complex microbiome on Earth, often challenging to cultivation, with unclear metabolic mechanisms in situ. Here, we present a pioneering concept for the in situ construction of functional microbial consortia (FMCs) and introduce an innovative method for creating FMCs by utilizing phenanthrene as a model compound to elucidate their in situ biodegradation mechanisms. Our methodology involves single-cell identification, sorting, and culture of functional microorganisms, resulting in the formation of a precise in situ FMC. Through Raman-activated cell sorting-stable-isotope probing, we identified and isolated phenanthrene-degrading bacterial cells from Achromobacter sp. and Pseudomonas sp., achieving precise and controllable in situ consortia based on genome-guided cultivation. Our in situ FMC outperformed conventionally designed functional flora when tested in real soil, indicating its superior phenanthrene degradation capacity. We revealed that microorganisms with high degradation efficiency isolated through conventional methods may exhibit pollutant tolerance but lack actual degradation ability in natural environments. This finding highlights the potential to construct FMCs based on thorough elucidation of in situ functional degraders, thereby achieving sustained and efficient pollutant degradation. Single-cell sequencing linked degraders with their genes and metabolic pathways, providing insights regarding the construction of in situ FMCs. The consortium in situ comprising microorganisms with diverse phenanthrene metabolic pathways might offer distinct advantages for enhancing phenanthrene degradation efficiency, such as the division of labour and cooperation or communication among microbial species. Our approach underscores the importance of in situ, single-cell precision identification, isolation, and cultivation for comprehensive bacterial functional analysis and resource exploration, which can extend to investigate MFCs in archaea and fungi, clarifying FMC construction methods for element recycling and pollutant transformation in complex real-world ecosystems.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fenantrenos / Pseudomonas / Microbiologia do Solo / Biodegradação Ambiental / Análise de Célula Única / Consórcios Microbianos / Marcação por Isótopo Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fenantrenos / Pseudomonas / Microbiologia do Solo / Biodegradação Ambiental / Análise de Célula Única / Consórcios Microbianos / Marcação por Isótopo Idioma: En Ano de publicação: 2024 Tipo de documento: Article