Your browser doesn't support javascript.
loading
Conotoxins Targeting Voltage-Gated Sodium Ion Channels.
Pei, Shengrong; Wang, Nan; Mei, Zaoli; Zhangsun, Dongting; Craik, David J; McIntosh, J Michael; Zhu, Xiaopeng; Luo, Sulan.
Afiliação
  • Pei S; Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Aus
  • Wang N; Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Aus
  • Mei Z; Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Aus
  • Zhangsun D; Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Aus
  • Craik DJ; Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Aus
  • McIntosh JM; Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Aus
  • Zhu X; Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Aus
  • Luo S; Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Aus
Pharmacol Rev ; 76(5): 828-845, 2024 Aug 15.
Article em En | MEDLINE | ID: mdl-38914468
ABSTRACT
Voltage-gated sodium (NaV) channels are intimately involved in the generation and transmission of action potentials, and dysfunction of these channels may contribute to nervous system diseases, such as epilepsy, neuropathic pain, psychosis, autism, and cardiac arrhythmia. Many venom peptides selectively act on NaV channels. These include conotoxins, which are neurotoxins secreted by cone snails for prey capture or self-defense but which are also valuable pharmacological tools for the identification and/or treatment of human diseases. Typically, conotoxins contain two or three disulfide bonds, and these internal crossbraces contribute to conotoxins having compact, well defined structures and high stability. Of the conotoxins containing three disulfide bonds, some selectively target mammalian NaV channels and can block, stimulate, or modulate these channels. Such conotoxins have great potential to serve as pharmacological tools for studying the functions and characteristics of NaV channels or as drug leads for neurologic diseases related to NaV channels. Accordingly, discovering or designing conotoxins targeting NaV channels with high potency and selectivity is important. The amino acid sequences, disulfide bond connectivity, and three-dimensional structures are key factors that affect the biological activity of conotoxins, and targeted synthetic modifications of conotoxins can greatly improve their activity and selectivity. This review examines NaV channel-targeted conotoxins, focusing on their structures, activities, and designed modifications, with a view toward expanding their applications. SIGNIFICANCE STATEMENT NaV channels are crucial in various neurologic diseases. Some conotoxins selectively target NaV channels, causing either blockade or activation, thus enabling their use as pharmacological tools for studying the channels' characteristics and functions. Conotoxins also have promising potential to be developed as drug leads. The disulfide bonds in these peptides are important for stabilizing their structures, thus leading to enhanced specificity and potency. Together, conotoxins targeting NaV channels have both immediate research value and promising future application prospects.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Conotoxinas / Canais de Sódio Disparados por Voltagem Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Conotoxinas / Canais de Sódio Disparados por Voltagem Idioma: En Ano de publicação: 2024 Tipo de documento: Article