Your browser doesn't support javascript.
loading
Identification of southern Taiwan genetic variants in thyroid dyshormonogenesis through whole-exome sequencing.
Tsai, Ching-Chao; Chang, Yu-Ming; Chou, Yen-Yin; Chen, Shou-Yen; Pan, Yu-Wen; Tsai, Meng-Che.
Afiliação
  • Tsai CC; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
  • Chang YM; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
  • Chou YY; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
  • Chen SY; Department of Genomic Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
  • Pan YW; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
  • Tsai MC; Department of Pediatrics, Kuo General Hospital, Tainan, Taiwan.
Kaohsiung J Med Sci ; 2024 Jun 25.
Article em En | MEDLINE | ID: mdl-38923290
ABSTRACT
Thyroid dyshormonogenesis (TDH) is responsible for 15%-25% of congenital hypothyroidism (CH) cases. Pathogenetic variants of this common inherited endocrine disorders vary geographically. Unraveling the genetic underpinnings of TDH is essential for genetic counseling and precise therapeutic strategies. This study aims to identify genetic variants associated with TDH in Southern Taiwan using whole exome sequencing (WES). We included CH patients diagnosed through newborn screening at a tertiary medical center from 2011 to 2022. Permanent TDH was determined based on imaging evidence of bilateral thyroid structure and the requirement for continuous medication beyond 3 years of age. Genomic DNA extracted from blood was used for exome library construction, and pathogenic variants were detected using an in-house algorithm. Of the 876 CH patients reviewed, 121 were classified as permanent, with 47 (40%) confirmed as TDH. WES was conducted for 45 patients, and causative variants were identified in 32 patients (71.1%), including DUOX2 (15 cases), TG (8 cases), TSHR (7 cases), TPO (5 cases), and DUOXA2 (1 case). Recurrent variants included DUOX2 c.3329G>A, TSHR c.1349G>A, TG c.1348delT, and TPO c.2268dupT. We identified four novel variants based on genotype, including TSHR c.1135C>T, TSHR c.1349G>C, TG c.2461delA, and TG c.2459T>A. This study underscores the efficacy of WES in providing definitive molecular diagnoses for TDH. Molecular diagnoses are instrumental in genetic counseling, formulating treatment, and developing management strategies. Future research integrating larger population cohorts is vital to further elucidate the genetic landscape of TDH.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article