Your browser doesn't support javascript.
loading
Preparation and cellular uptake behaviors of uniform fiber-like micelles with length controllability and high colloidal stability in aqueous media.
Ma, Junyu; Ma, Chen; Huang, Xiaoyu; de Araujo, Pedro Henrique Hermes; Goyal, Amit Kumal; Lu, Guolin; Feng, Chun.
Afiliação
  • Ma J; Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
  • Ma C; Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
  • Huang X; Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
  • de Araujo PHH; Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis-SC, 88040-970, SC, Brazil.
  • Goyal AK; Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Tehsil-Kishangarh-305 801 Distt.-Ajmer, Rajasthan, India.
  • Lu G; Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
  • Feng C; Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
Fundam Res ; 3(1): 93-101, 2023 Jan.
Article em En | MEDLINE | ID: mdl-38933561
ABSTRACT
Fragmentation/disassembly of fiber-like micelles generated by living crystalline-driven self-assembly (CDSA) is usually encountered in aqueous media, which hinders the applications of micelles. Herein, we report the generation of uniform fiber-like micelles consisting of a π-conjugated oligo(p-phenylenevinylene) core and a cross-linking silica shell with grafted poly(ethylene glycol) (PEG) chains by the combination of living CDSA, silica chemistry and surface grafting-onto strategy. Owing to the presence of crosslinking silica shell and the outmost PEG chains, the resulting micelles exhibit excellent dispersity and colloidal stability in PBS buffer, BSA aqueous solution and upon heating at 80 °C for 2 h without micellar fragmentation/disassembly. The micelles also show negligible cytotoxicity toward both HeLa cervical cancer and HEK239T human embryonic kidney cell lines. Interestingly, micelles with L n of 156 nm show the "stealth" property with no significant uptake by HeLa cells, whereas some certain amounts of micelles with L n of 535 nm can penetrate into HeLa cells, showing length-dependent cellular uptake behaviors. These results provide a route to prepare uniform, colloidally stable fiber-like nanostructures with tunable length and functions derived for biomedical applications.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article