Your browser doesn't support javascript.
loading
Genome-Wide Allele Frequency Changes Reveal That Dynamic Metapopulations Evolve Differently.
Angst, Pascal; Haag, Christoph R; Ben-Ami, Frida; Fields, Peter D; Ebert, Dieter.
Afiliação
  • Angst P; Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland.
  • Haag CR; CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier 34293, France.
  • Ben-Ami F; Tvärminne Zoological Station, University of Helsinki, Hanko 10900, Finland.
  • Fields PD; Tvärminne Zoological Station, University of Helsinki, Hanko 10900, Finland.
  • Ebert D; School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
Mol Biol Evol ; 41(7)2024 Jul 03.
Article em En | MEDLINE | ID: mdl-38935572
ABSTRACT
Two important characteristics of metapopulations are extinction-(re)colonization dynamics and gene flow between subpopulations. These processes can cause strong shifts in genome-wide allele frequencies that are generally not observed in "classical" (large, stable, and panmictic) populations. Subpopulations founded by one or a few individuals, the so-called propagule model, are initially expected to show intermediate allele frequencies at polymorphic sites until natural selection and genetic drift drive allele frequencies toward a mutation-selection-drift equilibrium characterized by a negative exponential-like distribution of the site frequency spectrum. We followed changes in site frequency spectrum distribution in a natural metapopulation of the cyclically parthenogenetic pond-dwelling microcrustacean Daphnia magna using biannual pool-seq samples collected over a 5-yr period from 118 ponds occupied by subpopulations of known age. As expected under the propagule model, site frequency spectra in newly founded subpopulations trended toward intermediate allele frequencies and shifted toward right-skewed distributions as the populations aged. Immigration and subsequent hybrid vigor altered this dynamic. We show that the analysis of site frequency spectrum dynamics is a powerful approach to understand evolution in metapopulations. It allowed us to disentangle evolutionary processes occurring in a natural metapopulation, where many subpopulations evolve in parallel. Thereby, stochastic processes like founder and immigration events lead to a pattern of subpopulation divergence, while genetic drift leads to converging site frequency spectrum distributions in the persisting subpopulations. The observed processes are well explained by the propagule model and highlight that metapopulations evolve differently from classical populations.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Seleção Genética / Daphnia / Deriva Genética / Frequência do Gene Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Seleção Genética / Daphnia / Deriva Genética / Frequência do Gene Idioma: En Ano de publicação: 2024 Tipo de documento: Article