Your browser doesn't support javascript.
loading
Predicting Regional Recurrence and Prognosis in Stereotactic Body Radiation Therapy-Treated Clinical Stage I Non-small Cell Lung Cancer Using a Radiomics Model Constructed With Surgical Data.
Ni, Jianjiao; Chen, Hongru; Yu, Lu; Guo, Tiantian; Zhou, Yue; Jiang, Shanshan; Ye, Ruiting; Yang, Xi; Chu, Li; Chu, Xiao; Li, Haiming; Liu, Wei; Gu, Yajia; Yuan, Zhiyong; Gong, Jing; Zhu, Zhengfei.
Afiliação
  • Ni J; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, S
  • Chen H; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, S
  • Yu L; Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
  • Guo T; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, S
  • Zhou Y; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, S
  • Jiang S; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, S
  • Ye R; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, S
  • Yang X; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, S
  • Chu L; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, S
  • Chu X; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, S
  • Li H; Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
  • Liu W; Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
  • Gu Y; Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
  • Yuan Z; Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China. Electronic address: zyuan@tmu.edu.cn.
  • Gong J; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China. Electronic address: gongjing1990@163.com.
  • Zhu Z; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, S
Article em En | MEDLINE | ID: mdl-38936632
ABSTRACT

PURPOSE:

Risk stratification of regional recurrence (RR) is clinically important in the design of adjuvant treatment and surveillance strategies in patients with clinical stage I non-small cell lung cancer (NSCLC) treated with stereotactic body radiation therapy (SBRT). This study aimed to develop a radiomics model predicting occult lymph node metastasis (OLNM) using surgical data and apply it to the prediction of RR in SBRT-treated early-stage NSCLC patients. METHODS AND MATERIALS Patients with clinical stage I NSCLC who underwent curative surgery with systematic lymph node dissection from January 2013 to December 2018 (the training cohort) and from January 2019 to December 2020 (the validation cohort) were included. A preoperative computed tomography-based radiomics model, a clinical feature model, and a fusion model predicting OLNM were constructed. The performance of the 3 models was quantified and compared in the training and validation cohorts. Subsequently, the radiomics model was used to predict RR in a cohort of consecutive SBRT-treated early-stage NSCLC patients from 2 academic medical centers.

RESULTS:

A total of 769 patients were included. Eight computed tomography features were identified in the radiomics model, achieving areas under the curves of 0.85 (95% CI, 0.81-0.89) and 0.83 (95% CI, 0.80-0.88) in the training and validation cohorts, respectively. Nevertheless, adding clinical features did not improve the performance of the radiomics model. With a median follow-up of 40.0 (95% CI, 35.2-44.8) months, 32 of the 213 patients in the SBRT cohort developed RR and those in the high-risk group based on the radiomics model had a higher cumulative incidence of RR (P < .001) and shorter regional recurrence-free survival (P = .02), progression-free survival (P = .004) and overall survival (P = .006) than those in the low-risk group.

CONCLUSIONS:

The radiomics model based on pathologically confirmed data effectively identified patients with OLNM, which may be useful in the risk stratification among SBRT-treated patients with clinical stage I NSCLC.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article