Your browser doesn't support javascript.
loading
In Operando Imaging Electrostatic-Driven Disassembly and Reassembly of Collagen Nanostructures.
Garcia-Sacristan, Clara; Gisbert, Victor G; Klein, Kevin; Saric, Andela; Garcia, Ricardo.
Afiliação
  • Garcia-Sacristan C; Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
  • Gisbert VG; Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
  • Klein K; Institute of Science and Technology Austria, Klosterneuburg 3400, Austria.
  • Saric A; Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom.
  • Garcia R; Institute of Science and Technology Austria, Klosterneuburg 3400, Austria.
ACS Nano ; 18(28): 18485-18492, 2024 Jul 16.
Article em En | MEDLINE | ID: mdl-38958189
ABSTRACT
Collagen is the most abundant protein in tissue scaffolds in live organisms. Collagen can self-assemble in vitro, which has led to a number of biotechnological and biomedical applications. To understand the dominant factors that participate in the formation of collagen nanostructures, here we study in real time and with nanoscale resolution the disassembly and reassembly of collagens. We implement a high-speed force microscope, which provides in situ high spatiotemporal resolution images of collagen nanostructures under changing pH conditions. The disassembly and reassembly are dominated by the electrostatic interactions among amino-acid residues of different molecules. Acidic conditions favor disassembly by neutralizing negatively charged residues. The process sets a net repulsive force between collagen molecules. A neutral pH favors the presence of negative and positively charged residues along the collagen molecules, which promotes their electrostatic attraction. Molecular dynamics simulations reproduce the experimental behavior and validate the electrostatic-based model of the disassembly and reassembly processes.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Colágeno / Nanoestruturas / Eletricidade Estática / Simulação de Dinâmica Molecular Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Colágeno / Nanoestruturas / Eletricidade Estática / Simulação de Dinâmica Molecular Idioma: En Ano de publicação: 2024 Tipo de documento: Article