Your browser doesn't support javascript.
loading
Urease-producing bacteria combined with pig manure biochar immobilize Cd and inhibit the absorption of Cd in lettuce (Lactuca sativa L.).
Su, Nannan; Wang, Ke; Zhang, Zhengtian; Yao, Lunguang; Chen, Zhaojin; Han, Hui.
Afiliação
  • Su N; Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China.
  • Wang K; Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China.
  • Zhang Z; Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China.
  • Yao L; Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China.
  • Chen Z; Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China.
  • Han H; Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China. 17657311626@163.com.
Environ Sci Pollut Res Int ; 31(33): 45537-45552, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38967850
ABSTRACT
The synergistic remediation of heavy metal-contaminated soil by functional strains and biochar has been widely studied. However, the mechanisms by which urease-producing bacteria combine with pig manure biochar (PMB) to immobilize Cd and inhibit Cd absorption in vegetables are still unclear. In our study, the effects and mechanisms of PMB combined with the urease-producing bacterium TJ6 (TJ6 + PMB) on Cd adsorption were explored. The effects of TJ6 + PMB on the Cd content and pH of the leachate were also studied through a 56-day soil leaching experiment. Moreover, the effects of the complexes on Cd absorption and microbial mechanisms in lettuce were explored through pot experiments. The results showed that PMB provided strain TJ6 with a greater ability to adsorb Cd, inducing the generation of CdS and CdCO3, and thereby reducing the Cd content (71.1%) and increasing the pH and urease activity in the culture medium. TJ6 + PMB improved lettuce dry weight and reduced Cd absorption. These positive effects were likely due to (1) TJ6 + PMB increased the organic matter and NH4+ contents, (2) TJ6 + PMB transformed available Cd into residual Cd and decreased the Cd content in the leachate, and (3) TJ6 + PMB altered the structure of the rhizosphere bacterial and fungal communities in lettuce, increasing the relative abundances of Stachybotrys, Agrocybe, Gaiellales, and Gemmatimonas. These genera can promote plant growth, decompose organic matter, and release phosphorus. Interestingly, the fungal communities were more sensitive to the addition of TJ6 and PMB, which play important roles in the decomposition of organic matter and immobilization of Cd. In conclusion, this study revealed the mechanism by which urease-producing bacteria combined with pig manure biochar immobilize Cd and provided a theoretical basis for safe pig manure return to Cd-polluted farmland. This study also provides technical approaches and bacterial resources for the remediation of heavy metal-contaminated soil.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes do Solo / Urease / Cádmio / Carvão Vegetal / Lactuca / Esterco Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes do Solo / Urease / Cádmio / Carvão Vegetal / Lactuca / Esterco Idioma: En Ano de publicação: 2024 Tipo de documento: Article