Your browser doesn't support javascript.
loading
TREK-1 channel as a therapeutic target for dexmedetomidine-mediated neuroprotection in cerebral ischemia.
Xu, Yang; Teng, XiaoDan; Wei, Ming; Liu, Yang.
Afiliação
  • Xu Y; Department of Anesthesiology, Cancer Hospital Affiliated to Harbin Medical University, 150 Haping Road (Street), NanGang District, Harbin, 150081, Heilongjiang Province, PR China.
  • Teng X; Department of Anesthesiology, Cancer Hospital Affiliated to Harbin Medical University, 150 Haping Road (Street), NanGang District, Harbin, 150081, Heilongjiang Province, PR China.
  • Wei M; Department of Anesthesiology, Cancer Hospital Affiliated to Harbin Medical University, 150 Haping Road (Street), NanGang District, Harbin, 150081, Heilongjiang Province, PR China.
  • Liu Y; Department of Anesthesiology, Cancer Hospital Affiliated to Harbin Medical University, 150 Haping Road (Street), NanGang District, Harbin, 150081, Heilongjiang Province, PR China. carline85@126.com.
Neurogenetics ; 2024 Jul 08.
Article em En | MEDLINE | ID: mdl-38976083
ABSTRACT
Our objective is to explore the protective effect of Dexmedetomidine on brain apoptosis and its mechanism through TREK-1 pathway. Forty male Sprague-Dawley rats were allocated into four groups Sham, Cerebral Ischemia/Reperfusion Injury (CIRI), 50 µg/kg Dex, and 100 µg/kg Dex. A rat model of middle cerebral artery occlusion (MCAO) was employed to simulate cerebral embolism. Primary cortical neurons were exposed to Dex for 48 h, with some receiving additional treatment with 100 µM yohimbine hydrochloride (YOH) or TREK-1 small interfering RNA (siRNA). Neuronal damage was assessed using hematoxylin and eosin (HE) staining. Cell viability and apoptosis were measured by Cell Counting Kit-8 (CCK8) and flow cytometry, respectively. Protein and gene expression levels of Bcl-2, Bax, and TREK-1 were determined by Western blot and real-time polymerase chain reaction (PCR). Histopathological changes revealed that Dex treatment at both 50 µg/kg and 100 µg/kg significantly mitigated neuronal damage compared to the CIRI group. YOH treatment and Trek1 siRNA significantly reduced cell viability (p < 0.05). The mRNA expression and protein levels of TREK-1 and Bax were remarkably increased, while mRNA expression and protein levels of Bcl-2 was seriously decreased after CIRI modeling. In contrast, Dex treatment at both concentrations led to decreased TREK-1 and Bax expression and increased Bcl-2 expression in primary cortical neurons. Addition of 100 µM YOH and Trek1 siRNA reversed the effects of Dex on apoptosis-related genes (p < 0.05). Dex exerts neuroprotective effects through the TREK-1 pathway in vivo and in vitro.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article