Your browser doesn't support javascript.
loading
Peracetic Acid Activation by Modified Hematite for Water Purification: Performance, Degradation Pathways, and Mechanism.
Liu, Xiaohong; Li, Zhangli; Jin, Lei; Wang, Haoqi; Huang, Yingping; Huang, Di; Liu, Xiang.
Afiliação
  • Liu X; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China.
  • Li Z; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China.
  • Jin L; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China.
  • Wang H; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China.
  • Huang Y; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China.
  • Huang D; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China.
  • Liu X; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China.
Langmuir ; 40(29): 15301-15309, 2024 Jul 23.
Article em En | MEDLINE | ID: mdl-38982808
ABSTRACT
Natural mineral-based advanced oxidation processes (AOPs) are now receiving increasing attention for the efficient degradation of pollutants. In this work, we used a common reducing agent (NaBH4) to treat natural Hematite to obtain modified Hematite (Hematite-(R)) and applied it to activate peracetic acid (PAA) for efficient degradation of cefazolin (CFZ). Compared with Hematite, the Hematite-(R)/PAA system increased the degradation rate of CFZ by 21.7% within 80 min under neutral conditions. Scavenging experiments and electron paramagnetic resonance (EPR) technology were introduced to identify the principal roles of 1O2, CH3C(O)OO•, and •OH for CFZ removal over the Hematite-(R)/PAA process. The outstanding capability of Hematite-(R) could be mainly due to the higher percentage of Fe(II) (52%) on the surface of catalysts. Furthermore, the possible degradation pathways of CFZ were explored. Moreover, the Hematite-(R)/PAA process showed a superior CFZ removal efficiency with a wide initial pH scope of 1.0-9.0. The degradation efficiency of CFZ showed a negligible effect in the presence of Cl-, SO42-, and NO3-, while significant inhibition was recorded after the addition of H2PO4- and CO32-. The inhibition of humic acid (HA) on CFZ degradation via the Hematite-(R)/PAA process showed an obvious concentration dependence. This work could provide strong support for the use of natural Hematite in water purification.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article