Your browser doesn't support javascript.
loading
Direct flipping dynamics and quantized enrichment of chirality at single-molecule resolution.
Hu, Weilin; Zhang, Zhiyun; Xiong, Wan; Li, Mingyao; Yan, Yong; Yang, Caiyao; Zou, Qi; Lü, Jing-Tao; Tian, He; Guo, Xuefeng.
Afiliação
  • Hu W; Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China.
  • Zhang Z; Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. C
  • Xiong W; School of Physics, Institute for Quantum Science and Engineering and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China.
  • Li M; Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China.
  • Yan Y; Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China.
  • Yang C; Center for Molecular Systems and Organic Devices, Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
  • Zou Q; Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China.
  • Lü JT; Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. C
  • Tian H; School of Physics, Institute for Quantum Science and Engineering and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China.
  • Guo X; Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. C
Sci Adv ; 10(28): eado1125, 2024 Jul 12.
Article em En | MEDLINE | ID: mdl-38996014
ABSTRACT
Chirality is an important aspect of nature, and numerous macroscopic methods have been developed to understand and control chirality. For the chiral tertiary amines, their flexible flipping process makes it possible to achieve high chiral controllability without bond formation and breaking. Here, we present a type of stable chiral single-molecule devices formed by tertiary amines, using graphene-molecule-graphene single-molecule junctions. These single-molecule devices allow real-time, in situ, and long-time measurements of the flipping process of an individual chiral nitrogen center with high temporal resolution. Temperature- and bias voltage-dependent experiments, along with theoretical investigations, revealed diverse chiral intermediates, indicating the regulation of the flipping dynamics by energy-related factors. Angle-dependent measurements further demonstrated efficient enrichment of chiral states using linearly polarized light by a symmetry-related factor. This approach offers a reliable means for understanding the chirality's origin, elucidating microscopic chirality regulation mechanisms, and aiding in the design of effective drugs.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article