Your browser doesn't support javascript.
loading
Exploring the potential of surface-modified alginate beads for catalytic removal of environmental pollutants and hydrogen gas generation.
Ahmad, Shahid; Khan, Mansoor; Khan, Shar Bahadar; Asiri, Abdullah M.
Afiliação
  • Ahmad S; Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
  • Khan M; Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
  • Khan SB; Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia. Electronic address: sbhkhan@kau.edu.sa.
  • Asiri AM; Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
Int J Biol Macromol ; : 133697, 2024 Jul 10.
Article em En | MEDLINE | ID: mdl-38996882
ABSTRACT
In this study, hydrogel beads were fabricated using alginate (Algt) polymer containing dispersed nickel phthalocyanine (NTC) nanomaterial. The viscous solution was poured dropwise into a divalent Ca2+ ions, resulting in the formation of hydrogel beads known as NTC@Algt-BDs. The surface of the NTC@Algt-BDs was further modified by coating them with different types of metal ions, yielding metal-coated M+/NTC@Algt-BDs. The adsorbed metal ions i.e., Cu+2, Ag+, Ni+2, Co+2, and Fe+3 were subsequently reduced to zero-valent metal nanoparticles (M0) by NaBH4. The prepared beads were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) (XPS). Initially, M0/NTC@Algt-BDs were examined for the catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Among them, the Cu0/NTC@Algt-BDs catalyst exhibited the highest reduction rate and therefore, investigated for reduction of different nitrophenols (NPs) and dyes, including 2-nitrophenol (2-NP), 2,6-dinitrophenol (2,6-DNP), methyl orange (MO), potassium ferrocyanide (PFC), congo red (CR), and acridine orange (ArO). The highest reduction rates of 2.019 and 1.394 min-1 were observed for MO and 2-NP, respectively. Furthermore, the fabricated catalysts were employed for the efficient production of H2 gas by NaBH4 methanolysis. Among which the Ag0/NTC@Algt-BDs catalyst showed excellent catalytic production of H2 gas, exhibiting the lowest activation energy (Ea) of 25.169 kJ/mol at ambient temperature. Furthermore, the impact of NaBH4 amount, and catalyst dosage on the reduction of 2-NP and H2 gas production was conducted whereas the effect of temperature on methanolysis of NaBH4 for evolution of H2 gas was studied. The amount of H2 gas was confirmed by GC-TCD system. Additionally, the recyclability of the catalyst was investigated, as it garnered significant research interest.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article