Your browser doesn't support javascript.
loading
Notch Signaling Hydrogels Enable Rapid Vascularization and Promote Dental Pulp Tissue Regeneration.
Zhang, Siyuan; Yu, Mei; Li, Maojiao; He, Min; Xie, Li; Huo, Fangjun; Tian, Weidong.
Afiliação
  • Zhang S; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengd
  • Yu M; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengd
  • Li M; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, Department of Oral and Maxillofacial Surgery, West China Hospi
  • He M; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengd
  • Xie L; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengd
  • Huo F; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengd
  • Tian W; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, Department of Oral and Maxillofacial Surgery, West China Hospi
Adv Sci (Weinh) ; : e2310285, 2024 Jul 16.
Article em En | MEDLINE | ID: mdl-39013081
ABSTRACT
Successful dental pulp regeneration is closely associated with rapid revascularization and angiogenesis, processes driven by the Jagged1(JAG1)/Notch signaling pathway. However, soluble Notch ligands have proven ineffective in activating this pathway. To overcome this limitation, a Notch signaling hydrogel is developed by indirectly immobilizing JAG1, aimed at precisely directing the regeneration of vascularized pulp tissue. This hydrogel displays favorable mechanical properties and biocompatibility. Cultivating dental pulp stem cells (DPSCs) and endothelial cells (ECs) on this hydrogel significantly upregulate Notch target genes and key proangiogenic markers expression. Three-dimensional (3D) culture assays demonstrate Notch signaling hydrogels improve effectiveness by facilitating encapsulated cell differentiation, enhancing their paracrine functions, and promoting capillary lumen formation. Furthermore, it effectively communicates with the Wnt signaling pathway, creating an odontoinductive microenvironment for pulp-dentin complex formation. In vivo studies show that short-term transplantation of the Notch signaling hydrogel accelerates angiogenesis, stabilizes capillary-like structures, and improves cell survival. Long-term transplantation further confirms its capability to promote the formation of pulp-like tissues rich in blood vessels and peripheral nerve-like structures. In conclusion, this study introduces a feasible and effective hydrogel tailored to specifically regulate the JAG1/Notch signaling pathway, showing potential in advancing regenerative strategies for dental pulp tissue.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article