Your browser doesn't support javascript.
loading
Investigation of the tradeoffs between tracking performance and energetics in heterogeneous variable recruitment fluidic artificial muscle bundles.
Mazzoleni, Nicholas; Bryant, Matthew.
Afiliação
  • Mazzoleni N; Mechanical & Aerospace Engineering, North Carolina State University, 1840 Entrepreneur Dr., Raleigh, North Carolina, 27606, UNITED STATES.
  • Bryant M; Department of Mechanical and Aerospace Engineering, North Carolina State University, 1840 Entrepreneur Dr., Campus Box 7910, Raleigh, North Carolina, 27606, UNITED STATES.
Bioinspir Biomim ; 2024 Jul 17.
Article em En | MEDLINE | ID: mdl-39019076
ABSTRACT
In traditional hydraulic robotics, actuators must be sized for the highest possible load, resulting in significant energy losses when operating in lower force regimes. Variable recruitment fluidic artificial muscle (FAM) bundles offer a novel bio-inspired solution to this problem. Divided into individual MUs, each with its own control valve, a variable recruitment FAM bundle uses a switching control scheme to selectively bring MUs online according to load demand. To date, every dynamic variable recruitment study in the literature has considered homogeneous bundles containing MUs of equal size. However, natural mammalian muscle MUs are heterogeneous and primarily operate based on Henneman's size principle, which states that MUs are recruited from smallest to largest. Is it better for a FAM variable recruitment bundle to operate according to this principle, or are there other recruitment orders that result in better performance? What are the appropriate criteria for switching between recruitment states for these different recruitment orders? This chapter seeks to answer these questions by performing two case studies exploring different bundle MU size distributions, analyzing the tradeoffs between tracking performance and energetics, and determining how these tradeoffs are affected by different MU recruitment order and recruitment state transition thresholds. The only difference between the two test cases is the overall force capacity (i.e., total size) of the bundle. For each test case, a Pareto frontier for different MU size distributions, recruitment orders, and recruitment state transition thresholds is constructed. The results show that there is a complex relationship between overall bundle size, MU size distributions, recruitment orders, and recruitment state transition thresholds corresponding to the best tradeoffs change along the Pareto frontier. Overall, these two case studies validate the use of Henneman's Size Principle as a variable recruitment strategy, but also demonstrate that it should not be the only method considered.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article