Your browser doesn't support javascript.
loading
Deletion of Fbxw7 in oocytes causes follicle loss and premature ovarian insufficiency in mice.
Zhao, Huihui; Zhang, Hanbin; Zhou, Yuxia; Shuai, Ling; Chen, Zhenguo; Wang, Liping.
Afiliação
  • Zhao H; Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China.
  • Zhang H; Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China.
  • Zhou Y; Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China.
  • Shuai L; Department of Obstetrics and Gynecology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, P.R. China.
  • Chen Z; Department of Reproductive medicine, Shenzhen Second People's Hospital, Shenzhen, Guangdong, P.R. China.
  • Wang L; Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China.
J Cell Mol Med ; 28(12): e18487, 2024 Jun.
Article em En | MEDLINE | ID: mdl-39031722
ABSTRACT
Premature ovarian insufficiency (POI) is one of the important causes of female infertility. Yet the aetiology for POI is still elusive. FBXW7 (F-box with 7 tandem WD) is one of the important components of the Skp1-Cullin1-F-box (SCF) E3 ubiquitin ligase. FBXW7 can regulate cell growth, survival and pluripotency through mediating ubiquitylation and degradation of target proteins via triggering the ubiquitin-proteasome system, and is associated with tumorigenesis, haematopoiesis and testis development. However, evidence establishing the function of FBXW7 in ovary is still lacking. Here, we showed that FBXW7 protein level was significantly decreased in the ovaries of the cisplatin-induced POI mouse model. We further showed that mice with oocyte-specific deletion of Fbxw7 demonstrated POI, characterized with folliculogenic defects, early depletion of follicle reserve, disordered hormonal secretion, ovarian dysfunction and female infertility. Impaired oocyte-GCs communication, manifested as down-regulation of connexin 37, may contribute to follicular development failure in the Fbxw7-mutant mice. Furthermore, single-cell RNA sequencing and in situ hybridization results indicated an accumulation of Clu and Ccl2 transcripts, which may alter follicle microenvironment deleterious to oocyte development and accelerate POI. Our results establish the important role of Fbxw7 in folliculogenesis and ovarian function, and might provide valuable information for understanding POI and female infertility.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Oócitos / Insuficiência Ovariana Primária / Proteína 7 com Repetições F-Box-WD / Folículo Ovariano Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Oócitos / Insuficiência Ovariana Primária / Proteína 7 com Repetições F-Box-WD / Folículo Ovariano Idioma: En Ano de publicação: 2024 Tipo de documento: Article