Your browser doesn't support javascript.
loading
Companion basil plants prime the tomato wound response through volatile signaling in a mixed planting system.
Yoshida, Riichiro; Taguchi, Shoma; Wakita, Chihiro; Serikawa, Shinichiro; Miyaji, Hiroyuki.
Afiliação
  • Yoshida R; Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, 890-0065, Japan. ryoshida@agri.kagoshima-u.ac.jp.
  • Taguchi S; The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, 890-0065, Japan. ryoshida@agri.kagoshima-u.ac.jp.
  • Wakita C; Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, 890-0065, Japan.
  • Serikawa S; Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, 890-0065, Japan.
  • Miyaji H; Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, 890-0065, Japan.
Plant Cell Rep ; 43(8): 200, 2024 Jul 22.
Article em En | MEDLINE | ID: mdl-39039312
ABSTRACT
KEY MESSAGE Volatile compounds released from basil prime the tomato wound response by promoting jasmonic acid, mitogen-activated protein kinase, and reactive oxygen species signaling. Within mixed planting systems, companion plants can promote growth or enhance stress responses in target plants. However, the mechanisms underlying these effects remain poorly understood. To gain insight into the molecular nature of the effects of companion plants, we investigated the effects of basil plants (Ocimum basilicum var. minimum) on the wound response in tomato plants (Solanum lycopersicum cv. 'Micro-Tom') within a mixed planting system under environmentally controlled chamber. The results showed that the expression of Pin2, which specifically responds to mechanical wounding, was induced more rapidly and more strongly in the leaves of tomato plants cultivated with companion basil plants. This wound response priming effect was replicated through the exposure of tomato plants to an essential oil (EO) prepared from basil leaves. Tomato leaves pre-exposed to basil EO showed enhanced expression of genes related to jasmonic acid, mitogen-activated protein kinase (MAPK), and reactive oxygen species (ROS) signaling after wounding stress. Basil EO also enhanced ROS accumulation in wounded tomato leaves. The wound response priming effect of basil EO was confirmed in wounded Arabidopsis plants. Loss-of-function analysis of target genes revealed that MAPK genes play pivotal roles in controlling the observed priming effects. Spodoptera litura larvae-fed tomato leaves pre-exposed to basil EO showed reduced growth compared with larvae-fed control leaves. Thus, mixed planting with basil may enhance defense priming in both tomato and Arabidopsis plants through the activation of volatile signaling.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Espécies Reativas de Oxigênio / Solanum lycopersicum / Folhas de Planta / Regulação da Expressão Gênica de Plantas / Ocimum basilicum / Ciclopentanos / Oxilipinas Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Espécies Reativas de Oxigênio / Solanum lycopersicum / Folhas de Planta / Regulação da Expressão Gênica de Plantas / Ocimum basilicum / Ciclopentanos / Oxilipinas Idioma: En Ano de publicação: 2024 Tipo de documento: Article