Your browser doesn't support javascript.
loading
Advancing groundwater quality predictions: Machine learning challenges and solutions.
Torres-Martínez, Juan Antonio; Mahlknecht, Jürgen; Kumar, Manish; Loge, Frank J; Kaown, Dugin.
Afiliação
  • Torres-Martínez JA; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico.
  • Mahlknecht J; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico. Electronic address: jurgen@tec.mx.
  • Kumar M; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico; School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
  • Loge FJ; Department of Civil and Environmental Engineering, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
  • Kaown D; School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea.
Sci Total Environ ; 949: 174973, 2024 Nov 01.
Article em En | MEDLINE | ID: mdl-39053524
ABSTRACT
Machine learning (ML) is revolutionizing groundwater quality research by enhancing predictive accuracy and management strategies for contamination. This comprehensive review explores the evolution of ML technologies and their integration into environmental science, assessing 230 papers to understand the advancements and challenges in groundwater quality research. It reveals that a substantial portion of the research neglects critical preprocessing steps, crucial for model accuracy, with 83 % of the studies overlooking this phase. Furthermore, while model optimization is more commonly addressed, being implemented in 65 % of the papers, there is a noticeable gap in model interpretability, with only 15 % of the research providing explanations for model outcomes. Comparative evaluation of ML algorithms and careful selection of evaluation metrics are deemed essential for determining model fitness and reliability. The review underscores the need for interdisciplinary collaboration, methodological rigor, and continuous innovation to advance ML in groundwater management. By addressing these challenges and implementing solutions, the full potential of ML can be harnessed to tackle complex environmental issues and ensure sustainable groundwater management. This comprehensive and critical review paper can serve as a guiding framework to establish minimum standards for developing ML in groundwater quality studies.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article