Your browser doesn't support javascript.
loading
Regulation of Caenorhabditis elegans HLH-30 subcellular localization dynamics: Evidence for a redox-dependent mechanism.
Colino-Lage, Hildegard; Guerrero-Gómez, David; Gómez-Orte, Eva; González, Xavier; Martina, José A; Dansen, Tobias B; Ayuso, Cristina; Askjaer, Peter; Puertollano, Rosa; Irazoqui, Javier E; Cabello, Juan; Miranda-Vizuete, Antonio.
Afiliação
  • Colino-Lage H; Redox Homeostasis Group, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
  • Guerrero-Gómez D; Redox Homeostasis Group, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
  • Gómez-Orte E; Centro de Investigación Biomédica de la Rioja (CIBIR), Logroño, La Rioja, Spain.
  • González X; Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA.
  • Martina JA; Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
  • Dansen TB; Center for Molecular Medicine, University Medical Center Utrecht, CG Utrecht, The Netherlands.
  • Ayuso C; Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Seville, Spain.
  • Askjaer P; Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Seville, Spain.
  • Puertollano R; Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
  • Irazoqui JE; Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA.
  • Cabello J; Centro de Investigación Biomédica de la Rioja (CIBIR), Logroño, La Rioja, Spain. Electronic address: juan.cabello@riojasalud.es.
  • Miranda-Vizuete A; Redox Homeostasis Group, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain. Electronic address: amiranda-ibis@us.es.
Free Radic Biol Med ; 2024 Jul 24.
Article em En | MEDLINE | ID: mdl-39059513
ABSTRACT
Basic Helix-Loop-Helix (bHLH) transcription factors TFEB/TFE3 and HLH-30 are key regulators of autophagy induction and lysosomal biogenesis in mammals and C. elegans, respectively. While much is known about the regulation of TFEB/TFE3, how HLH-30 subcellular dynamics and transactivation are modulated are yet poorly understood. Thus, elucidating the regulation of C. elegans HLH-30 will provide evolutionary insight into the mechanisms governing the function of bHLH transcription factor family. We report here that HLH-30 is retained in the cytoplasm mainly through its conserved Ser201 residue and that HLH-30 physically interacts with the 14-3-3 protein FTT-2 in this location. The FoxO transcription factor DAF-16 is not required for HLH-30 nuclear translocation upon stress, despite that both proteins partner to form a complex that coordinately regulates several organismal responses. Similar as described for DAF-16, the importin IMB-2 assists HLH-30 nuclear translocation, but constitutive HLH-30 nuclear localization is not sufficient to trigger its distinctive transcriptional response. Furthermore, we identify FTT-2 as the target of diethyl maleate (DEM), a GSH depletor that causes a transient nuclear translocation of HLH-30. Together, our work demonstrates that the regulation of TFEB/TFE3 and HLH-30 family members is evolutionarily conserved and that, in addition to a direct redox regulation through its conserved single cysteine residue, HLH-30 can also be indirectly regulated by a redox-dependent mechanism, probably through FTT-2 oxidation.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article