Your browser doesn't support javascript.
loading
Investigating the mechanisms of action of thyroid disruptors: A multimodal approach that integrates in vitro and metabolomic analysis.
Rolland, Naïs Clavel; Graslin, Fanny; Schorsch, Frédéric; Pourcher, Thierry; Blanck, Olivier.
Afiliação
  • Rolland NC; Université Côte d'Azur, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Frederic Joliot, Transporter in Imaging and Radiotherapy in Oncology Laboratory (TIRO), School of Medicine, Nice, France; Bayer
  • Graslin F; Université Côte d'Azur, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Frederic Joliot, Transporter in Imaging and Radiotherapy in Oncology Laboratory (TIRO), School of Medicine, Nice, France; Centre
  • Schorsch F; Bayer Crop Science, Sophia Antipolis, France.
  • Pourcher T; Université Côte d'Azur, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Frederic Joliot, Transporter in Imaging and Radiotherapy in Oncology Laboratory (TIRO), School of Medicine, Nice, France. Electr
  • Blanck O; Bayer Crop Science, Sophia Antipolis, France. Electronic address: olivier.blanck@bayer.com.
Toxicol In Vitro ; : 105911, 2024 Jul 26.
Article em En | MEDLINE | ID: mdl-39069214
ABSTRACT
The thyroid gland, a vital component of the endocrine system, plays a pivotal role in regulating metabolic processes, growth, and development. To better characterize thyroid system disrupting chemicals (TSDC), we followed the next-generation risk assessment approach, which further considers the mechanistic profile of xenobiotics. We combined targeted in vitro testing with untargeted metabolomics. Four known TSDC, propyl-thiouracil (PTU), sodium perchlorate, triclosan, and 5-pregnen-3ß-ol-20-one-16α­carbonitrile (PCN) were investigated using rat in vitro models, including primary hepatocytes, PCCL3 cells, thyroid microsomes, and three-dimensional thyroid follicles. We confirmed each compound's mode of action, PTU inhibited thyroperoxidase activity and thyroid hormones secretion in thyroid cells model, sodium perchlorate induced a NIS-mediated iodide uptake decrease as triclosan to a lesser extent, and PCN activated expression and activity of hepatic enzymes (CYPs and UGTs) involved in thyroid hormones metabolism. In parallel, we characterized intracellular metabolites of interest. We identified disrupted basal metabolic pathways, but also metabolites directly linked to the compound's mode of action as tyrosine derivates for sodium perchlorate and triclosan, bile acids involved in beta-oxidation, and precursors of cytochrome P450 synthesis for PCN. This pilot study has provided metabolomic fingerprinting of dedicated TSDC exposures, which could be used to screen and differentiate specific modes of action.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article