Your browser doesn't support javascript.
loading
A novel ARHGAP family gene signature for survival prediction in glioma patients.
Huang, Jin; Wang, Gaosong; Zhang, Jiahao; Liu, Yuankun; Shen, Yifan; Chen, Gengjing; Ji, Wei; Shao, Junfei.
Afiliação
  • Huang J; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China.
  • Wang G; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China.
  • Zhang J; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China.
  • Liu Y; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China.
  • Shen Y; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China.
  • Chen G; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China.
  • Ji W; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China.
  • Shao J; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China.
J Cell Mol Med ; 28(14): e18555, 2024 Jul.
Article em En | MEDLINE | ID: mdl-39075640
ABSTRACT
ARHGAP family genes are often used as glioma oncogenic factors, and their mechanism of action remains unexplained. Our research entailed a thorough examination of the immune microenvironment and enrichment pathways across various glioma subtypes. A distinctive 6-gene signature was developed employing the CGGA cohort, leading to insights into the disparities in clinical characteristics, mutation patterns, and immune cell infiltration among distinct risk categories. Additionally, a unique nomogram was established, grounded on ARHGAPs, with DCA curves illustrating the model's prospective clinical utility in guiding therapeutic strategies. Emphasizing the role of ARHGAP30, integral to our model, its impact on glioma severity and the credibility of our risk assessment model were substantiated through RT-qPCR, Western blot analysis, and cellular functional assays. We identified 6 ARHGAP family genes associated with glioma prognosis. Analysis using the Kaplan-Meier method indicated a correlation between elevated risk levels and adverse outcomes in glioma patients. The risk score, linked with tumour staging and IDH mutation status, emerged as an independent factor predicting prognosis. Patients in the high-risk category exhibited increased immune cell infiltration, enhanced tumour mutational burden, more pronounced expression of immune checkpoint genes, and a better response to ICB therapy. A nomogram, integrating the risk score with the pathological features of glioma patients, was developed. DCA analysis and cellular studies confirmed the model's potential to improve clinical treatment outcomes for patients. A novel ARHGAP family gene signature reveals the prognosis of glioma.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias Encefálicas / Regulação Neoplásica da Expressão Gênica / Proteínas Ativadoras de GTPase / Nomogramas / Glioma Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias Encefálicas / Regulação Neoplásica da Expressão Gênica / Proteínas Ativadoras de GTPase / Nomogramas / Glioma Idioma: En Ano de publicação: 2024 Tipo de documento: Article