Your browser doesn't support javascript.
loading
Revealing the Effect of the Microstructure on Potassium Storage Behavior in a Two-Dimensional Mesoporous Carbon Anode.
Huang, Xinli; Gao, Jing; Qin, Yuying; Du, Danni; Liu, Renbo; Shi, Yuanchang; Wang, Chengxiang; Zhang, Zhiwei; Zhang, Jing; Sun, Jinfeng; Li, Tao; Yin, Longwei; Wang, Rutao.
Afiliação
  • Huang X; Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China.
  • Gao J; Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China.
  • Qin Y; Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China.
  • Du D; Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China.
  • Liu R; Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China.
  • Shi Y; Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China.
  • Wang C; Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China.
  • Zhang Z; Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China.
  • Zhang J; Shandong Key Laboratory for Special Silicon-containing Material Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
  • Sun J; School of Material Science & Engineering, University of Jinan, Jinan 250024, China.
  • Li T; Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China.
  • Yin L; Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China.
  • Wang R; Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China.
ACS Nano ; 18(32): 21459-21471, 2024 Aug 13.
Article em En | MEDLINE | ID: mdl-39088247
ABSTRACT
Hard carbon is considered as the most promising anode material for potassium-ion energy storage devices. Substantial progress has been made in exploring advanced hard carbons to solve the issues of sluggish kinetics and large volume changes caused by the large radius of K+. However, the relationship between their complicated microstructures and the K+ charge storage behavior is still not fully explored. Herein, a series of two-dimensional mesoporous carbon microcoins (2D-MCMs) with tunable microstructures in heteroatom content and graphitization degree are synthesized by a facile hard-template method and follow a temperature-controllable annealing process. It is found that high heteroatom content makes for surface-driven K+ storage behavior, which increases the capacity-contribution ratio from a high potential region, while a high graphitization degree makes for K+ intercalation behavior, which increases the capacity-contribution ratio from a low potential region. Electrochemical results from a three-electrode Swagelok cell demonstrate that a 2D-MCM anode with more capacity contribution from a low working region allows the porous carbon cathode to be operated in a much wider electrochemical window, thus storing more charge. As a result, potassium-ion capacitors based on the optimized 2D-MCM anode deliver a high energy density of 113 Wh kg-1 and an exhilarating power density of 51,000 W kg-1.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article