Your browser doesn't support javascript.
loading
Hepatic miR-363 promotes nonalcoholic fatty liver disease by suppressing INSIG1.
Wang, Lechen; Jia, Guotao; Fu, Rongrong; Liang, Jingjie; Xue, Wenqing; Zheng, Juan; Qin, Yuan; Zhang, Min; Meng, Jing.
Afiliação
  • Wang L; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Binhai, Tianjin, China.
  • Jia G; Department of Pathology, Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, China.
  • Fu R; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Binhai, Tianjin, China.
  • Liang J; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Binhai, Tianjin, China.
  • Xue W; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Binhai, Tianjin, China.
  • Zheng J; Department of Pathology, Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, China.
  • Qin Y; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
  • Zhang M; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Binhai, Tianjin, China; China-Russia Agricultural Products Processing Joint Laboratory, Tianjin Agricultural University, Wuqing, Tianjin, China. Electronic addres
  • Meng J; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Binhai, Tianjin, China. Electronic address: jing.meng@tust.edu.cn.
J Nutr Biochem ; 134: 109717, 2024 Aug 03.
Article em En | MEDLINE | ID: mdl-39103107
ABSTRACT
Nonalcoholic fatty liver disease (NAFLD) constitutes one of major worldwide health problem which typically progressively results in nonalcoholic steatohepatitis (NASH) and eventually cirrhosis and liver cancer. Liver-specific deletion of INSIG1 promotes SREBP1 nuclear translocation to activate downstream lipogenic genes expression, leading to lipid accumulation. However, the underlying pathogenesis of NAFLD, and particularly involved in miRNA participation are still to be thoroughly explored. Here, we found that miR-363-3p was significantly overexpressed in high-fat, high-cholesterol (HFHC) diet mice liver tissue and fatty acid-induced steatosis cells. miR-363-3p directly targets INSIG1 to inhibit its expression, thereby facilitating the cleavage of SREBP and nuclear translocation to activate subsequent transcription of lipogenic genes in vitro and in vivo. In addition, we identified apigenin, a natural flavonoid compound, inhibited miR-363-3p expression to up-regulate INSIG1 and suppress nuclear translocation of SREBP1, thereby down-regulated lipogenic genes expression in steatosis cells and HFHC diet mice liver tissues. Taken together, our results demonstrated that miR-363-3p as a key regulator of hepatic lipid homeostasis targeted INSIG1, and apigenin alleviated NAFLD through the miR-363-3p/INSIG1/SREBP1 pathway. This indicates that reduction of miR-363-3p levels as a possible treatment of hepatic steatosis and provides a potential new therapeutic strategy for targeting miRNA to ameliorate NAFLD.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article