Your browser doesn't support javascript.
loading
Nature-inspired innovation: Alginic-kojic acid material for sustainable antibacterial and carbon dioxide fixation.
Patamia, Vincenzo; Saccullo, Erika; Magaletti, Federica; Fuochi, Virginia; Furnari, Salvatore; Fiorenza, Roberto; Furneri, Pio Maria; Barbera, Vincenzina; Floresta, Giuseppe; Rescifina, Antonio.
Afiliação
  • Patamia V; Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
  • Saccullo E; Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Via Santa Sofia 97, 95123 Catania, Italy.
  • Magaletti F; Department of Chemistry, Materials and Chemical Engineering (Giulio Natta), Politecnico di Milano, Via Mancinelli 7, Milano, Italy.
  • Fuochi V; Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Via Santa Sofia 97, 95123 Catania, Italy.
  • Furnari S; Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Via Santa Sofia 97, 95123 Catania, Italy.
  • Fiorenza R; Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
  • Furneri PM; Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Via Santa Sofia 97, 95123 Catania, Italy.
  • Barbera V; Department of Chemistry, Materials and Chemical Engineering (Giulio Natta), Politecnico di Milano, Via Mancinelli 7, Milano, Italy.
  • Floresta G; Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy. Electronic address: giuseppe.floresta@unict.it.
  • Rescifina A; Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
Int J Biol Macromol ; 277(Pt 4): 134514, 2024 Oct.
Article em En | MEDLINE | ID: mdl-39111504
ABSTRACT
The current environmental consciousness of the world's population encourages researchers to work on new materials that are environmentally benign and able to display the appropriate features for the needed application. To develop high-performing, inexpensive eco-materials, scientists have frequently turned to nature, attempting to mimic its processes' excellent performance at a reasonable price. In this regard, we decided to focus on alginic acid (AA), a polysaccharide widely found in brown algae, and kojic acid (KA), a chelating agent fungi produces. This study proposes rapidly synthesizing a sustainable, biocompatible material (AK) based on AA and KA, employing chlorokojic acid (CKA). The material has a dual function antibacterial activity on both Gram-positive and Gram-negative bacteria, without any cytotoxic action on human cells in vitro, and catalytic ability to convert CO2 into cyclic carbonates at atmospheric pressure, without solvents, with high yields, and without the use of metals. Furthermore, the material's insolubility in organic solvents allows it to be easily separated from the reaction product and reused for other catalytic cycles. Both applications have a key role in the medical and environmental fields, combating the outbreak of infections and providing an innovative methodology to fix the CO2 on specific substrates.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pironas / Dióxido de Carbono / Ácido Algínico / Antibacterianos Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pironas / Dióxido de Carbono / Ácido Algínico / Antibacterianos Idioma: En Ano de publicação: 2024 Tipo de documento: Article