Your browser doesn't support javascript.
loading
BrfA functions as a bacterial enhancer-binding protein to regulate functional amyloid Fap-dependent biofilm formation in Pseudomonas fluorescens by sensing cyclic diguanosine monophosphate.
Guo, Miao; Tan, Siqi; Wu, Yinying; Zheng, Chongni; Du, Peng; Zhu, Junli; Sun, Aihua; Liu, Xiaoxiang.
Afiliação
  • Guo M; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China; School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China; Zouping Center for Disease Control and Prevention, Zouping, Shandong, 256200, China.
  • Tan S; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China; School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China.
  • Wu Y; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China; School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China.
  • Zheng C; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China; School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China.
  • Du P; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China.
  • Zhu J; College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China.
  • Sun A; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China. Electronic address: aihuasun@126.com.
  • Liu X; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China. Electronic address: liuxx@hmc.edu.cn.
Microbiol Res ; 287: 127864, 2024 Jul 31.
Article em En | MEDLINE | ID: mdl-39116779
ABSTRACT
The functional amyloid of Pseudomonas (Fap) is essential for the formation of macrocolony biofilms, pellicles, and solid surface-associated (SSA) biofilms of Pseudomonas fluorescens PF07, an isolate from refrigerated marine fish. However, limited information on the expression regulation of fap genes is available. Herein, we found that a novel bacterial enhancer-binding protein (bEBP), BrfA, regulated Fap-dependent biofilm formation by directly sensing cyclic diguanosine monophosphate (c-di-GMP). Our in vivo data showed that the REC domain deletion of BrfA promoted fap gene expression and biofilm formation, and c-di-GMP positively regulated the transcription of fapA in a BrfA-dependent manner. In in vitro experiments, we found that the ATPase activity of BrfA was inhibited by the REC domain and was activated by c-di-GMP. BrfA and the sigma factor RpoN bound to the upstream region of fapA, and the binding ability of BrfA was not affected by either deletion of the REC domain or c-di-GMP. BrfA specifically bound to the three enhancer sites upstream of the fapA promoter, which contain the consensus sequence CA-(N4)-TGA(A/T)ACACC. In vivo experiments using a lacZ fusion reporter indicated that all three BrfA enhancer sites were essential for the activation of fapA transcription. Overall, these findings reveal that BrfA is a new type of c-di-GMP-responsive transcription factor that directly controls the transcription of Fap biosynthesis genes in P. fluorescens. Fap functional amyloids and BrfA-type transcription factors are widespread in Pseudomonas species. The novel insights into the c-di-GMP- and BrfA-dependent expression regulation of fap provided by this work will contribute to the development of antibiofilm strategies.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article