Your browser doesn't support javascript.
loading
Structural characteristics and biological activity of a water-soluble polysaccharide HDCP-2 from Camellia sinensis.
Sun, Qiaoxu; Du, Jiao; Wang, Zhen; Li, Xinyue; Fu, Ranze; Liu, Hui; Xu, Na; Zhu, Guoqi; Wang, Bin.
Afiliação
  • Sun Q; Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China.
  • Du J; Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China.
  • Wang Z; Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China.
  • Li X; Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China.
  • Fu R; Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China.
  • Liu H; Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China.
  • Xu N; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, PR China. Electronic address: naxu2014@ahau.edu.cn.
  • Zhu G; Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China. Electronic add
  • Wang B; Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China; Institute of P
Int J Biol Macromol ; 277(Pt 4): 134437, 2024 Aug 06.
Article em En | MEDLINE | ID: mdl-39116965
ABSTRACT
Large-leaf Yellow tea (LYT) is a traditional beverage from Camellia Sinensis (L.) O. Kuntze in China and has unusual health-regulating functions. This investigation explored the structural characteristics of a polysaccharide extracted from LYT, which possesses anti-inflammatory activity. The polysaccharide HDCP-2, obtained through ethanol fractional precipitation and then DEAE-52 anion exchange column, followed by DPPH radical scavenging screening, exhibited a yield of 0.19 %. The HPGPC method indicated that the molecular weight of HDCP-2 is approximately 2.9 × 104 Da. Analysis of the monosaccharide composition revealed that HDCP-2 consisted of mannose, glucose, xylose, and galacturonic acid, and their molar ratio is approximately 0.40.51.20.7. The structure motif of HDCP-2 was probed carefully through methylation analysis, FT-IR, and NMR analysis, which identified the presence of ß-d-Xylp(1→, →2, 4)-ß-d-Xylp(1→, →3)-ß-d-Manp(1→, α-d-Glcp(1→ and →2, 4)-α-d-GalAp(1→ linkages. A CCK-8 kit assay was employed to evaluate the anti-inflammatory action of HDCP-2. These results demonstrated that HDCP-2 could inhibit the migration and proliferation of the MH7A cells and reduce NO production in an inflammatory model induced by TNF-α. The abundant presence of xylose accounted for 39 % of the LYT polysaccharide structure, and its distinctive linking mode (→2, 4)-ß-d-Xylp(1→) appears to be the primary contributing factor to its anti-inflammatory effect.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article