Nb Doping Induced the Formation of Protective Layer to Improve the Stability of Fe-Ni3S2 for Seawater Electrolysis.
Small
; : e2402852, 2024 Aug 09.
Article
em En
| MEDLINE
| ID: mdl-39118552
ABSTRACT
The seawater electrolysis to produce hydrogen is a significant topic on alleviating the energy crisis. Here, the Fe, Nb-Ni3S2 catalyst is prepared by metal-doping strategy, and it shows high oxygen evolution reaction (OER) activity in alkaline medium, and only needs 1.491 V to deliver a current density of 100 mA cm-2 in simulated seawater. Using Fe, Nb-Ni3S2 as a bifunctional catalyst, the two-electrode electrolyzer only requires a voltage of 1.751 V (without impedance compensation) to drive the current density of 50 mA cm-2, and can run over 150 h stably in the simulated seawater. Importantly, In situ Raman test demonstrates that the outstanding performance of Fe, Nb-Ni3S2 in simulated seawater is ascribed to the in situ formed sulfate protective layer induced by Nb doping, which can effectively inhibit the corrosion of chloride ion, while the protective layer is absent for Fe-Ni3S2. The stable operation of simulated seawater electrolysis under industrial current density further confirms the stability improvement mechanism of forming protective layer. In short, this study provides a new strategy of using Nb dopants inducing the formation of protective layer to enhance the stability of seawater electrolysis.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article