Your browser doesn't support javascript.
loading
The potential link between gas diffusion and embolism spread in angiosperm xylem: Evidence from flow-centrifuge experiments and modelling.
Silva, Luciano M; Pereira, Luciano; Kaack, Lucian; Guan, Xinyi; Pfaff, Jonas; Trabi, Christophe L; Jansen, Steven.
Afiliação
  • Silva LM; Institute of Botany, Ulm University, Ulm, Germany.
  • Pereira L; Institute of Botany, Ulm University, Ulm, Germany.
  • Kaack L; Institute of Botany, Ulm University, Ulm, Germany.
  • Guan X; Botanical Garden of Ulm University, Hans-Krebs-Weg, Ulm, Germany.
  • Pfaff J; Institute of Botany, Ulm University, Ulm, Germany.
  • Trabi CL; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China.
  • Jansen S; Institute of Botany, Ulm University, Ulm, Germany.
Plant Cell Environ ; 2024 Aug 09.
Article em En | MEDLINE | ID: mdl-39119783
ABSTRACT
Understanding xylem embolism formation is challenging due to dynamic changes and multiphase interactions in conduits. Here, we hypothesise that embolism spread involves gas diffusion in xylem, and is affected by time. We measured hydraulic conductivity (Kh) in flow-centrifuge experiments over 1 h at a given pressure and temperature for stem samples of three angiosperm species. Temporal changes in Kh at 5, 22, and 35°C, and at various pressures were compared to modelled gas concentration changes in a recently embolised vessel in the centre of a centrifuge sample. Temporal changes in Kh were logarithmic and species-specific. Maximum relative increases of Kh between 6% and 40% happened at 22°C for low centrifugal speed (<3250 RPM), while maximum decreases between 41% and 61% occurred at higher speeds. These reductions in Kh were experimentally shown to be associated with a temporal increase of embolism at the centre of centrifuge samples, which was likely associated with gas concentration increases in recently embolized vessels. Although embolism is mostly pressure-driven, our experimental and modelled data indicate that time, conduit characteristics, and temperature are involved due to their potential role in gas diffusion. Gas diffusion, however, does not seem to cover the entire process of embolism spread.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article