Your browser doesn't support javascript.
loading
Dental pulp stem cells promote malignant transformation of oral epithelial cells through mitochondrial transfer.
Shen, Peiqi; Ma, Zeyi; Xu, Xiaoqing; Li, Weiyu; Li, Yaoyin.
Afiliação
  • Shen P; Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, People's Republic of China.
  • Ma Z; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China.
  • Xu X; Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, People's Republic of China.
  • Li W; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China.
  • Li Y; Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, People's Republic of China.
Med Mol Morphol ; 2024 Aug 09.
Article em En | MEDLINE | ID: mdl-39122902
ABSTRACT
Oral epithelial dysplasia includes a range of clinical oral mucosal diseases with potentially malignant traits. Dental pulp stem cells (DPSCs) are potential candidates for cell-based therapies targeting various diseases. However, the effect of DPSCs on the progression of oral mucosal precancerous lesions remains unclear. Animal experiments were conducted to assess the effect of human DPSCs (hDPSCs). We measured the proliferation, motility and mitochondrial respiratory function of the human dysplastic oral keratinocyte (DOK) cells cocultured with hDPSCs. Mitochondrial transfer experiments were performed to determine the role mitochondria from hDPSCs in the malignant transformation of DOK cells. hDPSCs injection accelerated carcinogenesis in 4NQO-induced oral epithelial dysplasia in mice. Coculture with hDPSCs increased the proliferation, migration, invasion and mitochondrial respiratory function of DOK cells. Mitochondria from hDPSCs could be transferred to DOK cells, and activated mTOR signaling pathway in DOK cells. Our study demonstrates that hDPSCs activate the mTOR signaling pathway through mitochondrial transfer, promoting the malignant transformation of oral precancerous epithelial lesions.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article