Your browser doesn't support javascript.
loading
Underwater quantitative thickness mapping through marine growth for corrosion measurement using shear wave EMAT with high lift-off performance.
Zuo, Peng.
Afiliação
  • Zuo P; Advanced Remanufacturing & Technology Centre (ARTC), Agency for Science, Technology and Research (A*STAR), 3 Cleantech Loop, #01/01 CleanTech Two, Singapore, 637143, Republic of Singapore. Electronic address: zuop@artc.a-star.edu.sg.
Ultrasonics ; 143: 107426, 2024 Sep.
Article em En | MEDLINE | ID: mdl-39126742
ABSTRACT
Underwater inspection is important to ensure the safety, integrity and functionality of underwater structures. Although numerous conventional methods have been adopted for underwater inspection, successful application of most methods relies on the surface condition of the object, which, however, is typically covered by marine growth. Consequently, routine inspection requires thorough cleaning of marine growth, which is time-consuming and costly. Hence a method which can inspect objects without the need for extensive surface cleaning is necessary. Two methods have the potential to achieve this pulse eddy current (PEC) and electromagnetic acoustic transducer (EMAT). PEC attains a significant lift-off distance, enabling inspection through marine growth. However, it suffers from high sensitivity to environmental conditions and low inspection accuracy due to 'relative' property which means its results are interpreted by comparing received signals to reference values. In contrast to PEC, EMAT provides 'absolute' measurements, ensuring precise results in the inspection. But it is limited by a small lift-off distance (<2∼3 mm), rendering it unsuitable for underwater applications with marine growth. Therefore, if the lift-off distance can be enhanced to a specific value, this method may offer a superior solution for underwater inspections. In this paper, a quantitative measurement method is proposed through employing a shear wave EMAT with high lift-off performance. A repelling configuration of magnets is introduced to achieve a significantly improved maximum effective lift-off distance of up to 5 mm in both air and seawater conditions with only 400 Vpp applied. This EMAT is then demonstrated to measure thickness through marine growth, showing excellent underwater performance in quantitative thickness mapping for corrosion inspection.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article