Your browser doesn't support javascript.
loading
How obliquity has differently shaped Pluto's and Triton's landscapes and climates.
Bertrand, Tanguy; Forget, François; Lellouch, Emmanuel.
Afiliação
  • Bertrand T; Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris, Université Paris Sciences & Lettres, CNRS, Sorbonne Université, University of Paris Diderot, Sorbonne Paris Cité, Meudon 92195, France.
  • Forget F; Laboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, CNRS, Sorbonne Université, École Normale Supérieure, Université Paris Science et Lettres, Ecole Polytechnique, Institut Polytechnique de Paris, Paris 75005, France.
  • Lellouch E; Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris, Université Paris Sciences & Lettres, CNRS, Sorbonne Université, University of Paris Diderot, Sorbonne Paris Cité, Meudon 92195, France.
Proc Natl Acad Sci U S A ; 121(34): e2408226121, 2024 Aug 20.
Article em En | MEDLINE | ID: mdl-39133849
ABSTRACT
Triton and Pluto are believed to share a common origin, both forming initially in the Kuiper Belt but Triton being later captured by Neptune. Both objects display similar sizes, densities, and atmospheric and surface ice composition, with the presence of volatile ices N2, CH4, and CO. Yet their appearance, including their surface albedo and ice distribution strongly differ. What can explain these different appearances? A first disparity is that Triton is experiencing significant tidal heating due to its orbit around Neptune, with subsequent resurfacing and a relatively flat surface, while Pluto is not tidally activated and displays a pronounced topography. Here we present long-term volatile transport simulations of Pluto and Triton, using the same initial conditions and volatile inventory, but with the known orbit and rotation of each object. The model reproduces, to first order, the observed volatile ice surface distribution on Pluto and Triton. Our results unambiguously demonstrate that obliquity is the main driver of the differences in surface appearance and in climate properties on Pluto and Triton, and give further support to the hypothesis that both objects had a common origin followed by a different dynamical history.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article