Your browser doesn't support javascript.
loading
Predicting undetected native vascular plant diversity at a global scale.
Daru, Barnabas H.
Afiliação
  • Daru BH; Department of Biology, Stanford University, Stanford, CA 94305.
Proc Natl Acad Sci U S A ; 121(34): e2319989121, 2024 Aug 20.
Article em En | MEDLINE | ID: mdl-39133854
ABSTRACT
Vascular plants are diverse and a major component of terrestrial ecosystems, yet their geographic distributions remain incomplete. Here, I present a global database of vascular plant distributions by integrating species distribution models calibrated to species' dispersal ability and natural habitats to predict native range maps for 201,681 vascular plant species into unsurveyed areas. Using these maps, I uncover unique patterns of native vascular plant diversity, endemism, and phylogenetic diversity revealing hotspots in underdocumented biodiversity-rich regions. These hotspots, based on detailed species-level maps, show a pronounced latitudinal gradient, strongly supporting the theory of increasing diversity toward the equator. I trained random forest models to extrapolate diversity patterns under unbiased global sampling and identify overlaps with modeled estimations but unveiled cryptic hotspots that were not captured by modeled estimations. Only 29% to 36% of extrapolated plant hotspots are inside protected areas, leaving more than 60% outside and vulnerable. However, the unprotected hotspots harbor species with unique attributes that make them good candidates for conservation prioritization.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Filogenia / Plantas / Biodiversidade Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Filogenia / Plantas / Biodiversidade Idioma: En Ano de publicação: 2024 Tipo de documento: Article