General synthesis of high-entropy single-atom nanocages for electrosynthesis of ammonia from nitrate.
Nat Commun
; 15(1): 6932, 2024 Aug 13.
Article
em En
| MEDLINE
| ID: mdl-39138150
ABSTRACT
Given the growing emphasis on energy efficiency, environmental sustainability, and agricultural demand, there's a pressing need for decentralized and scalable ammonia production. Converting nitrate ions electrochemically, which are commonly found in industrial wastewater and polluted groundwater, into ammonia offers a viable approach for both wastewater treatment and ammonia production yet limited by low producibility and scalability. Here we report a versatile and scalable solution-phase synthesis of high-entropy single-atom nanocages (HESA NCs) in which Fe and other five metals-Co, Cu, Zn, Cd, and In-are isolated via cyano-bridges and coordinated with C and N, respectively. Incorporating and isolating the five metals into the matrix of Fe resulted in Fe-C5 active sites with a minimized symmetry of lattice as well as facilitated water dissociation and thus hydrogenation process. As a result, the Fe-HESA NCs exhibited a high selectivity toward NH3 from the electrocatalytic reduction of nitrate with a Faradaic efficiency of 93.4% while maintaining a high yield rate of 81.4 mg h-1 mg-1.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article