Your browser doesn't support javascript.
loading
Drosophila models of the anti-inflammatory and anti-obesity mechanisms of kombucha tea produced by Camellia sinensis leaf fermentation.
Tran, Duy Binh; Le, Nguyen Khoi Nguyen; Duong, Minh Tue; Yuna, Kamo; Pham, L A Tuan; Nguyen, Q C Thanh; Tragoolpua, Yingmanee; Kaewkod, Thida; Kamei, Kaeko.
Afiliação
  • Tran DB; Department of Functional Chemistry Kyoto Institute of Technology Kyoto Japan.
  • Le NKN; Department of Surgery, College of Medicine University of Illinois Chicago Illinois USA.
  • Duong MT; Department of Functional Chemistry Kyoto Institute of Technology Kyoto Japan.
  • Yuna K; Department of Functional Chemistry Kyoto Institute of Technology Kyoto Japan.
  • Pham LAT; Department of Functional Chemistry Kyoto Institute of Technology Kyoto Japan.
  • Nguyen QCT; Department of Functional Chemistry Kyoto Institute of Technology Kyoto Japan.
  • Tragoolpua Y; Department of Molecular Pathology Hanoi Medical University Hanoi Vietnam.
  • Kaewkod T; Department of Functional Chemistry Kyoto Institute of Technology Kyoto Japan.
  • Kamei K; Department of Chemistry, College of Natural Sciences Cantho University Cantho City Vietnam.
Food Sci Nutr ; 12(8): 5722-5733, 2024 Aug.
Article em En | MEDLINE | ID: mdl-39139927
ABSTRACT
Kombucha tea is a traditional beverage originating from China and has recently gained popularity worldwide. Kombucha tea is produced by the fermentation of tea leaves and is characterized by its beneficial properties and varied chemical content produced during the fermentation process, which includes organic acids, amino acids, vitamins, minerals, and other biologically active compounds. Kombucha tea is often consumed as a health drink to combat obesity and inflammation; however, the bioactive effects of kombucha tea have not been thoroughly researched. In this study, we reveal the underlying mechanisms of the beneficial properties of kombucha tea and how they protect against obesity and inflammation by studying Drosophila models. We established an inflammatory Drosophila model by knocking down the lipid storage droplet-1 gene, a human perilipin-1 ortholog. In this model, dysfunction of lipid storage droplet-1 induces inflammation by enhancing the infiltration of hemocytes into adipose tissues, increasing reactive oxygen species production, elevating levels of proinflammatory cytokines, and promoting the differentiation of hemocytes into macrophages. These processes are regulated by the c-Jun N-terminal Kinase (JNK) pathway. Using this unique Drosophila model that mimics mammalian inflammation, we verified the beneficial effects of kombucha tea on reducing tissue inflammation. Our data confirms that kombucha tea effectively improves inflammatory conditions by suppressing the expression of cytokines and proinflammatory responses induced by lipid storage droplet-1 dysfunction. It was found that kombucha tea consumption alleviated the production of reactive oxygen species and activated the JNK signaling pathway, signifying its potential as an anti-inflammatory agent against systemic inflammatory responses connected to the JNK pathway. Kombucha tea reduced triglyceride accumulation by increasing the activity of Brummer (a lipase), thereby promoting lipolysis in third-instar larvae. Therefore, kombucha tea could be developed as a novel, functional beverage to protect against obesity and inflammation. Our study also highlights the potential use of this innovative model to evaluate the effects of bioactive compounds derived from natural products.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article