Your browser doesn't support javascript.
loading
Drastic increase in the magnitude of very rare summer-mean vapor pressure deficit extremes.
Hermann, Mauro; Wernli, Heini; Röthlisberger, Matthias.
Afiliação
  • Hermann M; Institute for Atmospheric and Climate Science (IAC), ETH Zürich, CH-8092, Zurich, Switzerland. hermann.ethz@gmail.com.
  • Wernli H; SRF Meteo, Swiss Radio and Television (SRF), CH-8052, Zurich, Switzerland. hermann.ethz@gmail.com.
  • Röthlisberger M; Institute for Atmospheric and Climate Science (IAC), ETH Zürich, CH-8092, Zurich, Switzerland.
Nat Commun ; 15(1): 7022, 2024 Aug 15.
Article em En | MEDLINE | ID: mdl-39147789
ABSTRACT
Summers with extremely high vapor pressure deficit contribute to crop losses, ecosystem damages, and wildfires. Here, we identify very rare summer vapor pressure deficit extremes globally in reanalysis data and climate model simulations, and quantify the contributions of temperature and atmospheric moisture anomalies to their intensity. The simulations agree with reanalysis data regarding these physical characteristics of historic vapor pressure deficit extremes, and show a +33/+28% increase in their intensity in the northern/southern mid-latitudes over this century. About half of this drastic increase in the magnitude of extreme vapor pressure deficit anomalies is due to climate warming, since this quantity depends exponentially on temperature. Further contributing factors are increasing temperature variability (e.g., in Europe) and the expansion of soil moisture-limited regions. This study shows that to avoid amplified impacts of future vapor pressure deficit extremes, ecosystems and crops must become more resilient not only to an increasing mean vapor pressure deficit, but additionally also to larger seasonal anomalies of this quantity.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article