Your browser doesn't support javascript.
loading
Performance of single nanopore and multi-pore membranes for blue energy.
Chinappi, Mauro; Baldelli, Matteo; Di Muccio, Giovanni; Viola, Francesco; Giacomello, Alberto; Cecconi, Fabio; Balme, Sébastien.
Afiliação
  • Chinappi M; University of Rome, ITALY.
  • Baldelli M; University of Rome Tor Vergata, Dipartimento di Ingegneria Industriale, Via del Politecnico 1, Roma, ITALY.
  • Di Muccio G; Sapienza Università di Roma, Dipartimento di Meccanica e Aerospaziale, Via Eudossiana 18, Roma, ITALY.
  • Viola F; Gran Sasso Science Institute, Gran Sasso Science Institute, viale Francesco Crispi, 7, L'Aquila, ITALY.
  • Giacomello A; Sapienza Università di Roma, Department of Mechanical and Aerospace Engineering, Vie Eudossiana 18, Roma, ITALY.
  • Cecconi F; Istituto dei Sistemi Complessi Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Via dei Taurini, 19, Roma, ITALY.
  • Balme S; Universite de Montpellier, Institut Européen des Membranes, Place Eugène Bataillon, Montpellier, FRANCE.
Chemphyschem ; : e202400395, 2024 Aug 19.
Article em En | MEDLINE | ID: mdl-39161129
ABSTRACT
The salinity gradient power extracted from the mixing of electrolyte solutions at dierent concentrations through selective nanoporous membranes is a promising route to renewable energy. However, several challenges need to be addressed to make this technology protable, one of the most relevant being the increase of the extractable power per membrane area. Here, the performance of asymmetric conical and bullet-shaped nanopores in a 50 nm thick membrane are studied via electrohydrodynamic simulations, varying the pore radius, curvature, and surface charge. The output power reaches ∼ 60 pW per pore for positively charged membranes (surface charge σw =160 mC/m2 ) and ∼ 30 pW for negatively charges ones, σw =-160 mC/m2 and it is robust to minor variations of nanopore shape and radius. A theoretical argument that takes into account the interaction among neighbour pores allows to extrapolate the single-pore performance to multi-pore membranes showing that power densities from tens to hundreds of W/m2 can be reached by proper tuning of the nanopore number density and the boundary layer thickness. Our model for scaling single-pore performance to multi-pore membrane can be applied also to experimental data providing a simple tool to effectively compare different nanopore membranes in blue energy applications.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article