Your browser doesn't support javascript.
loading
Making the Most of Nothing: One-Class Classification for Single-Molecule Transport Studies.
Bro-Jørgensen, William; Hamill, Joseph M; Mezei, Gréta; Lawson, Brent; Rashid, Umar; Halbritter, András; Kamenetska, Maria; Kaliginedi, Veerabhadrarao; Solomon, Gemma C.
Afiliação
  • Bro-Jørgensen W; Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark.
  • Hamill JM; Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark.
  • Mezei G; Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Muegyetem rkp. 3., Budapest H-1111, Hungary.
  • Lawson B; ELKH-BME Condensed Matter Research Group, Muegyetem rkp. 3., Budapest H-1111, Hungary.
  • Rashid U; Department of Physics, Chemistry and Division of Material Science and Engineering, Boston University, Boston, Massachusetts 02215, United States.
  • Halbritter A; Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
  • Kamenetska M; Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Muegyetem rkp. 3., Budapest H-1111, Hungary.
  • Kaliginedi V; ELKH-BME Condensed Matter Research Group, Muegyetem rkp. 3., Budapest H-1111, Hungary.
  • Solomon GC; Department of Physics, Chemistry and Division of Material Science and Engineering, Boston University, Boston, Massachusetts 02215, United States.
ACS Nanosci Au ; 4(4): 250-262, 2024 Aug 21.
Article em En | MEDLINE | ID: mdl-39184833
ABSTRACT
Single-molecule experiments offer a unique means to probe molecular properties of individual molecules-yet they rest upon the successful control of background noise and irrelevant signals. In single-molecule transport studies, large amounts of data that probe a wide range of physical and chemical behaviors are often generated. However, due to the stochasticity of these experiments, a substantial fraction of the data may consist of blank traces where no molecular signal is evident. One-class (OC) classification is a machine learning technique to identify a specific class in a data set that potentially consists of a wide variety of classes. Here, we examine the utility of two different types of OC classification models on four diverse data sets from three different laboratories. Two of these data sets were measured at cryogenic temperatures and two at room temperature. By training the models solely on traces from a blank experiment, we demonstrate the efficacy of OC classification as a powerful and reliable method for filtering out blank traces from a molecular experiment in all four data sets. On a labeled 4,4'-bipyridine data set measured at 4.2 K, we achieve an accuracy of 96.9 ± 0.3 and an area under the receiver operating characteristic curve of 99.5 ± 0.3 as validated over a fivefold cross-validation. Given the wide range of physical and chemical properties that can be probed in single-molecule experiments, the successful application of OC classification to filter out blank traces is a major step forward in our ability to understand and manipulate molecular properties.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article