Your browser doesn't support javascript.
loading
Electrical brain networks before and after transcranial pulsed shockwave stimulation in Alzheimer's patients.
Wojtecki, Lars; Cont, Celine; Stute, Natalie; Galli, Anastasia; Schulte, Christina; Trenado, Carlos.
Afiliação
  • Wojtecki L; Departmemt of Neurology and Neurorehabilitation, Hospital Zum Heiligen Geist, Academic Teaching Hospital of the Heinrich-Heine-University Duesseldorf, Von-Broichhausen-Allee 1, 47906, Kempen, Germany. Lars.Wojtecki@artemed.de.
  • Cont C; Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany. Lars.Wojtecki@artemed.de.
  • Stute N; Departmemt of Neurology and Neurorehabilitation, Hospital Zum Heiligen Geist, Academic Teaching Hospital of the Heinrich-Heine-University Duesseldorf, Von-Broichhausen-Allee 1, 47906, Kempen, Germany.
  • Galli A; Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany.
  • Schulte C; Departmemt of Neurology and Neurorehabilitation, Hospital Zum Heiligen Geist, Academic Teaching Hospital of the Heinrich-Heine-University Duesseldorf, Von-Broichhausen-Allee 1, 47906, Kempen, Germany.
  • Trenado C; Departmemt of Neurology and Neurorehabilitation, Hospital Zum Heiligen Geist, Academic Teaching Hospital of the Heinrich-Heine-University Duesseldorf, Von-Broichhausen-Allee 1, 47906, Kempen, Germany.
Geroscience ; 2024 Aug 27.
Article em En | MEDLINE | ID: mdl-39192004
ABSTRACT
Alzheimer's disease (AD) is a neurodegenerative disorder that dramatically affects cognitive abilities and represents the most common cause of dementia. Currently, pharmacological interventions represent the main treatment to deal with the symptoms of AD; however, alternative approaches are readily sought. Transcranial pulse stimulation (TPS) is an emerging non-invasive neuromodulation technique that uses short, repetitive shockwaves with the potential to provide a wide range of vascular, metabolic, and neurotrophic changes and that has recently been shown to improve cognitive abilities in AD. This exploratory study aims to gain insight into the neurophysiological effect of one session of TPS in AD as reflected in electroencephalographic measures, e.g., spectral power, coherence, Tsallis entropy (TE), and cross-frequency coupling (cfc). We document changes in power (frontal and occipital), coherence (frontal, occipital and temporal), and TE (temporal and frontal) as well as changes in cfc (parietal-frontal, parietal-temporal, frontal-temporal). Our results emphasize the role of electroencephalographic measures as prospective markers for the neurophysiological effect of TPS.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article