Your browser doesn't support javascript.
loading
Hydrodynamic Evaluation of a Filtering Hydrocyclone for Solid Particle/Water Separation.
Cavalcante, Daniel C M; Magalhães, Hortência L F; Neto, Severino R Farias; Gomez, Ricardo S; Delgado, João M P Q; Lima, Antonio G B; Vasconcelos, Danielle B T; Silva, Márcio J V; Farias, Daniel O; Queiroz, Suelyn F A M; Santos, Antonio C Q; Tito, Thâmmara L H; Silva, Emmanuel F M.
Afiliação
  • Cavalcante DCM; Federal Institute of Education, Science and Technology of the Sertão Pernambuco, Serra Talhada 56915-899, Pernambuco, Brazil.
  • Magalhães HLF; Science and Technology Institute, Federal University of the Vales do Jequitinhonha and Mucuri, Diamantina 39100-000, Minas Gerais, Brazil.
  • Neto SRF; Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil.
  • Gomez RS; Department of Mechanical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil.
  • Delgado JMPQ; CONSTRUCT-LFC, Civil Engineering Department, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal.
  • Lima AGB; Department of Mechanical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil.
  • Vasconcelos DBT; Federal Institute of Education, Science and Technology of Alagoas, Piranhas 57460-000, Alagoas, Brazil.
  • Silva MJV; Federal Institute of Education, Science and Technology of Pernambuco, Vitória de Santo Antão 56600-000, Pernambuco, Brazil.
  • Farias DO; Department of Production Engineering, Federal University of Campina Grande, Sumé 58540-000, Paraiba, Brazil.
  • Queiroz SFAM; CERTBIO, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil.
  • Santos ACQ; CERTBIO, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil.
  • Tito TLH; CERTBIO, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil.
  • Silva EFM; Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil.
Membranes (Basel) ; 14(8)2024 Aug 06.
Article em En | MEDLINE | ID: mdl-39195423
ABSTRACT
A conventional hydrocyclones is a versatile equipment with a high processing capacity and low maintenance cost. Currently, several studies aim to alter the typical structure of the conventional hydrocyclone in order to modify its performance and purpose. For this, filtering hydrocyclones have emerged, where a porous membrane replaces the conic or cylindrical wall. During the operation of this equipment, in addition to the traditionally observed streams (feed, underflow, and overflow), there is a liquid stream resulting from the filtration process, commonly referred to as filtrate. This work proposes to numerically investigate the solid particle/liquid water separation process in a filtering hydrocyclone using the commercial software Ansys CFX® 15.0. The proposed mathematical model for the study considers three-dimensional, steady state and turbulent flow, using the Eulerian-Eulerian approach and the Shear Stress Transport (SST) turbulence model. This study presents and analyzes the volume fraction, velocity, and pressure fields, along with flowlines and velocity profiles. The results indicate that the proposed model effectively captures the fluid dynamic behavior within the filtering hydrocyclone, highlighting higher pressures near the porous membrane and a higher concentration of solid particles in the conical region, with water being more concentrated in the cylindrical part of the hydrocyclone. Additionally, the findings show that the volumetric flow rate of the filtrate significantly influences the internal flow dynamics, with conventional hydrocyclones demonstrating higher pressure gradients compared to the proposed filtering hydrocyclone.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article