Your browser doesn't support javascript.
loading
An Object-Centric Hierarchical Pose Estimation Method Using Semantic High-Definition Maps for General Autonomous Driving.
Pyo, Jeong-Won; Choi, Jun-Hyeon; Kuc, Tae-Yong.
Afiliação
  • Pyo JW; Department of Electrical and Computer Engineering, College of Information and Communication Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
  • Choi JH; Department of Electrical and Computer Engineering, College of Information and Communication Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
  • Kuc TY; Department of Electrical and Computer Engineering, College of Information and Communication Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Sensors (Basel) ; 24(16)2024 Aug 11.
Article em En | MEDLINE | ID: mdl-39204886
ABSTRACT
To achieve Level 4 and above autonomous driving, a robust and stable autonomous driving system is essential to adapt to various environmental changes. This paper aims to perform vehicle pose estimation, a crucial element in forming autonomous driving systems, more universally and robustly. The prevalent method for vehicle pose estimation in autonomous driving systems relies on Real-Time Kinematic (RTK) sensor data, ensuring accurate location acquisition. However, due to the characteristics of RTK sensors, precise positioning is challenging or impossible in indoor spaces or areas with signal interference, leading to inaccurate pose estimation and hindering autonomous driving in such scenarios. This paper proposes a method to overcome these challenges by leveraging objects registered in a high-precision map. The proposed approach involves creating a semantic high-definition (HD) map with added objects, forming object-centric features, recognizing locations using these features, and accurately estimating the vehicle's pose from the recognized location. This proposed method enhances the precision of vehicle pose estimation in environments where acquiring RTK sensor data is challenging, enabling more robust and stable autonomous driving. The paper demonstrates the proposed method's effectiveness through simulation and real-world experiments, showcasing its capability for more precise pose estimation.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article