Your browser doesn't support javascript.
loading
Synapse Regulation.
Vecchiarelli, Haley A; Lopes, Luana Tenorio; Paolicelli, Rosa C; Stevens, Beth; Wake, Hiroaki; Tremblay, Marie-Ève.
Afiliação
  • Vecchiarelli HA; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
  • Lopes LT; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
  • Paolicelli RC; Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland.
  • Stevens B; Department of Neurology, Harvard Medical School, Center for Life Science, Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA.
  • Wake H; Division of Brain Circuits, National Institute for Basic Biology, Myodaiji-cho, Okazaki, Japan.
  • Tremblay MÈ; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada. evetremblay@uvic.ca.
Adv Neurobiol ; 37: 179-208, 2024.
Article em En | MEDLINE | ID: mdl-39207693
ABSTRACT
Microglia are the resident immune cells of the brain. As such, they rapidly detect changes in normal brain homeostasis and accurately respond by fine-tuning in a tightly regulated manner their morphology, gene expression, and functional behavior. Depending on the nature of these changes, microglia can thicken and retract their processes, proliferate and migrate, release numerous signaling factors and compounds influencing neuronal physiology (e.g., cytokines and trophic factors), in addition to secreting proteases able to transform the extracellular matrix, and phagocytosing various types of cellular debris, etc. Because microglia also transform rapidly (on a time scale of minutes) during experimental procedures, studying these very special cells requires methods that are specifically non-invasive. The development of such methods has provided unprecedented insights into the roles of microglia during normal physiological conditions. In particular, transcranial two-photon in vivo imaging revealed that presumably "resting" microglia continuously survey the brain parenchyma with their highly motile processes, in addition to modulating their structural and functional interactions with neuronal circuits along the changes in neuronal activity and behavioral experience occurring throughout the lifespan. In this chapter, we will describe how surveillant microglia interact with synaptic elements and modulate the number, maturation, function, and plasticity of synapses in the healthy developing, mature, and aging brain, with consequences on neuronal activity, learning and memory, and the behavioral outcome.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sinapses / Encéfalo / Microglia / Plasticidade Neuronal Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sinapses / Encéfalo / Microglia / Plasticidade Neuronal Idioma: En Ano de publicação: 2024 Tipo de documento: Article