Your browser doesn't support javascript.
loading
Deciphering genetic and nongenetic factors underlying tumour dormancy: insights from multiomics analysis of two syngeneic MRD models of melanoma and leukemia.
Laguillaumie, Marie-Océane; Titah, Sofia; Guillemette, Aurélie; Neve, Bernadette; Leprêtre, Frederic; Ségard, Pascaline; Shaik, Faruk Azam; Collard, Dominique; Gerbedoen, Jean-Claude; Fléchon, Léa; Hasan Bou Issa, Lama; Vincent, Audrey; Figeac, Martin; Sebda, Shéhérazade; Villenet, Céline; Kluza, Jérôme; Laine, William; Fournier, Isabelle; Gimeno, Jean-Pascal; Wisztorski, Maxence; Manier, Salomon; Tarhan, Mehmet Cagatay; Quesnel, Bruno; Idziorek, Thierry; Touil, Yasmine.
Afiliação
  • Laguillaumie MO; CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, 59000, Lille, France.
  • Titah S; Inserm, U1003-PHYCEL-Physiologie Cellulaire, Univ. Lille, 59000, Lille, France.
  • Guillemette A; CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, 59000, Lille, France.
  • Neve B; Inserm, U1003-PHYCEL-Physiologie Cellulaire, Univ. Lille, 59000, Lille, France.
  • Leprêtre F; CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, 59000, Lille, France.
  • Ségard P; CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, 59000, Lille, France.
  • Shaik FA; CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, Univ. Lille, 59000, Lille, France.
  • Collard D; CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, 59000, Lille, France.
  • Gerbedoen JC; LIMMS/CNRS-IIS IRL2820, The University of Tokyo, Tokyo, Japan.
  • Fléchon L; CNRS, IIS, COL, Univ. Lille SMMiL-E Project, Lille, France.
  • Hasan Bou Issa L; LIMMS/CNRS-IIS IRL2820, The University of Tokyo, Tokyo, Japan.
  • Vincent A; CNRS, IIS, COL, Univ. Lille SMMiL-E Project, Lille, France.
  • Figeac M; LIMMS/CNRS-IIS IRL2820, The University of Tokyo, Tokyo, Japan.
  • Sebda S; CNRS, IIS, COL, Univ. Lille SMMiL-E Project, Lille, France.
  • Villenet C; Department of Health and Environment, Junia HEI-ISEN-ISA, Lille, France.
  • Kluza J; CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, 59000, Lille, France.
  • Laine W; CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, 59000, Lille, France.
  • Fournier I; CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, 59000, Lille, France.
  • Gimeno JP; CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, Univ. Lille, 59000, Lille, France.
  • Wisztorski M; CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, Univ. Lille, 59000, Lille, France.
  • Manier S; CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, Univ. Lille, 59000, Lille, France.
  • Tarhan MC; CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, 59000, Lille, France.
  • Quesnel B; CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, 59000, Lille, France.
  • Idziorek T; Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), Univ. Lille, 59000, Lille, France.
  • Touil Y; Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), Univ. Lille, 59000, Lille, France.
Biol Res ; 57(1): 59, 2024 Sep 03.
Article em En | MEDLINE | ID: mdl-39223638
ABSTRACT

BACKGROUND:

Tumour dormancy, a resistance mechanism employed by cancer cells, is a significant challenge in cancer treatment, contributing to minimal residual disease (MRD) and potential relapse. Despite its clinical importance, the mechanisms underlying tumour dormancy and MRD remain unclear. In this study, we employed two syngeneic murine models of myeloid leukemia and melanoma to investigate the genetic, epigenetic, transcriptomic and protein signatures associated with tumour dormancy. We used a multiomics approach to elucidate the molecular mechanisms driving MRD and identify potential therapeutic targets.

RESULTS:

We conducted an in-depth omics analysis encompassing whole-exome sequencing (WES), copy number variation (CNV) analysis, chromatin immunoprecipitation followed by sequencing (ChIP-seq), transcriptome and proteome investigations. WES analysis revealed a modest overlap of gene mutations between melanoma and leukemia dormancy models, with a significant number of mutated genes found exclusively in dormant cells. These exclusive genetic signatures suggest selective pressure during MRD, potentially conferring resistance to the microenvironment or therapies. CNV, histone marks and transcriptomic gene expression signatures combined with Gene Ontology (GO) enrichment analysis highlighted the potential functional roles of the mutated genes, providing insights into the pathways associated with MRD. In addition, we compared "murine MRD genes" profiles to the corresponding human disease through public datasets and highlighted common features according to disease progression. Proteomic analysis combined with multi-omics genetic investigations, revealed a dysregulated proteins signature in dormant cells with minimal genetic mechanism involvement. Pathway enrichment analysis revealed the metabolic, differentiation and cytoskeletal remodeling processes involved in MRD. Finally, we identified 11 common proteins differentially expressed in dormant cells from both pathologies.

CONCLUSIONS:

Our study underscores the complexity of tumour dormancy, implicating both genetic and nongenetic factors. By comparing genomic, transcriptomic, proteomic, and epigenomic datasets, our study provides a comprehensive understanding of the molecular landscape of minimal residual disease. These results provide a robust foundation for forthcoming investigations and offer potential avenues for the advancement of targeted MRD therapies in leukemia and melanoma patients, emphasizing the importance of considering both genetic and nongenetic factors in treatment strategies.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasia Residual / Modelos Animais de Doenças / Melanoma Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasia Residual / Modelos Animais de Doenças / Melanoma Idioma: En Ano de publicação: 2024 Tipo de documento: Article