Your browser doesn't support javascript.
loading
Insights into the differential removal of various red tide organisms using modified clay: Influence of biocellular properties and mechanical interactions.
Zang, Xiaomiao; Yu, Zhiming; Song, Xiuxian; Cao, Xihua; Jiang, Kaiqin.
Afiliação
  • Zang X; Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center fo
  • Yu Z; Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center fo
  • Song X; Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center fo
  • Cao X; Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center fo
  • Jiang K; Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Universit
Harmful Algae ; 138: 102695, 2024 Sep.
Article em En | MEDLINE | ID: mdl-39244231
ABSTRACT
In recent years, red tides have increased worldwide in frequency, intensity, involving a higher number of causative species during the events. As the most commonly used method for control of red tides, modified clay (MC) was found to have differential ability to remove various red tide species. However, the underlying mechanisms have not yet been completely elucidated. In this study, the use of MC to remove three typical disaster-causing species, Aureococcus anophagefferens, Prorocentrum donghaiense and Heterosigma akashiwo, was investigated, and differential removal of these species was probed with insights into their biocellular properties and mechanical interactions. The results showed that removal efficiencies of the three species by MC decreased in the order P. donghaiense > A. anophagefferens > H. akashiwo, while the sedimentation rates decreased in the order H. akashiwo > P. donghaiense > A. anophagefferens. Analyses of the cell surface properties and redundancy analysis (RDA) revealed that the highest surface zeta potential of -5.32±0.39 mV made P. donghaiense the most easily removed species; the smallest cell size of 3.30±0.03 µm facilitated the removal of A. anophagefferens; and the highest hydrophobicity with a H2O surface contact angle of 98.50±4.31° made the removal of H. akashiwo difficult. X-ray photoelectron spectroscopy (XPS) data indicated that the electronegativity of P. donghaiense was caused by carboxyl groups and phosphodiester groups, and the hydrophobicity of H. akashiwo was associated with a high C-(C, H) content on the cell surface. According to the extended Derjaguin, Landau, Verwey, and Overbeek (ex-DLVO) theory calculation, differences in the interaction energies between MC and the three red tide species effectively explained their different sedimentation rates. In addition, the degree of oxidative damage caused by MC to the three red tide species differed, which also affected the removal of red tide organisms.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Argila / Proliferação Nociva de Algas Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Argila / Proliferação Nociva de Algas Idioma: En Ano de publicação: 2024 Tipo de documento: Article