Your browser doesn't support javascript.
loading
Unraveling the toxicity mechanisms of nanoplastics with various surface modifications on Skeletonema costatum: Cellular and molecular perspectives.
Xu, Ting-Ting; Li, Zhen-Liang; Li, Heng-Xiang; Lin, Lang; Hou, Rui; Liu, Shan; Li, Tao; Zeng, Eddy Y; Yu, Ke-Fu; Xu, Xiang-Rong.
Afiliação
  • Xu TT; Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Li ZL; Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Li HX; Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China. Elec
  • Lin L; Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
  • Hou R; Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
  • Liu S; Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
  • Li T; Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
  • Zeng EY; Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
  • Yu KF; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
  • Xu XR; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China. Electronic address: xuxr@scsio.ac.cn.
Sci Total Environ ; 953: 176164, 2024 Nov 25.
Article em En | MEDLINE | ID: mdl-39260474
ABSTRACT
Nanoplastics are ubiquitous in marine environments, exhibiting high bioavailability and potential toxicity to marine organisms. However, the impacts of nanoplastics with various surface modifications on marine microalgae remain largely unexplored. This study explored the toxicity mechanisms of two nanoplastic types-polystyrene (PS) and polymethyl methacrylate (PMMA)-with distinct surface modifications on Skeletonema costatum at cellular and molecular levels. Results showed that nanoplastics significantly impaired the growth of microalgae, particularly PS-NH2, which caused the most pronounced growth inhibition, reaching 56.99 % after a 96-h exposure at 50 mg/L. Transcriptomic profiling revealed that nanoplastics disrupted the expression of genes predominantly involved in ribosome biogenesis, aminoacyl-tRNA biosynthesis, amino acid metabolism, and carbohydrate metabolism pathways. The integrated biochemical and transcriptomic evidence highlighted that PS-NH2 nanoplastics had the most adverse impact on microalgae, affecting fundamental pathways such as ribosome biogenesis, energy metabolism, photosynthesis, and oxidative stress. Our findings underscore the influence of surface-modified nanoplastics on algal growth and contribute new understanding to the toxicity mechanisms of these nanoplastics in marine microalgae, offering critical information for assessing the risks of emerging pollutants.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Microalgas Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Microalgas Idioma: En Ano de publicação: 2024 Tipo de documento: Article