Your browser doesn't support javascript.
loading
A new understanding of coronary curvature and haemodynamic impact on the course of plaque onset and progression.
Zhang, Mingzi; Gharleghi, Ramtin; Shen, Chi; Beier, Susann.
Afiliação
  • Zhang M; School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
  • Gharleghi R; School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
  • Shen C; School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
  • Beier S; School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
R Soc Open Sci ; 11(9): 241267, 2024 Sep.
Article em En | MEDLINE | ID: mdl-39309260
ABSTRACT
The strong link between atherosclerosis and luminal biomechanical stresses is well established. Yet, this understanding has not translated into preventative coronary diagnostic imaging, particularly due to the under-explored role of coronary anatomy and haemodynamics in plaque onset, which we aim to address with this work. The left coronary trees of 20 non-stenosed (%diameter stenosis [%DS] = 0), 12 moderately (0 < %DS < 70) and 7 severely (%DS ≥ 70) stenosed cases were dissected into bifurcating and non-bifurcating segments for whole-tree and segment-specific comparisons, correlating nine three-dimensional coronary anatomical features, topological shear variation index (TSVI) and luminal areas subject to low time-average endothelial shear stress (%LowTAESS), high oscillatory shear index (%HighOSI) and high relative residence time (%HighRRT). We found that TSVI is the only metric consistently differing between non-stenosed and stenosed cases across the whole tree, bifurcating and non-bifurcating segments (p < 0.002, AUC = 0.876), whereas average curvature and %HighOSI differed only for the whole trees (p < 0.024) and non-bifurcating segments (p < 0.027), with AUC > 0.711. Coronary trees with moderate or severe stenoses differed only in %LowTAESS (p = 0.009) and %HighRRT (p = 0.012). This suggests TSVI, curvature and %HighOSI are potential factors driving plaque onset, with greater predictive performance than the previously recognized %LowTAESS and %HighRRT, which appears to play a role in plaque progression.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article