Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.566
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 172(3): 500-516.e16, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29275859

RESUMEN

Microglia are embryonically seeded macrophages that contribute to brain development, homeostasis, and pathologies. It is thus essential to decipher how microglial properties are temporally regulated by intrinsic and extrinsic factors, such as sexual identity and the microbiome. Here, we found that microglia undergo differentiation phases, discernable by transcriptomic signatures and chromatin accessibility landscapes, which can diverge in adult males and females. Remarkably, the absence of microbiome in germ-free mice had a time and sexually dimorphic impact both prenatally and postnatally: microglia were more profoundly perturbed in male embryos and female adults. Antibiotic treatment of adult mice triggered sexually biased microglial responses revealing both acute and long-term effects of microbiota depletion. Finally, human fetal microglia exhibited significant overlap with the murine transcriptomic signature. Our study shows that microglia respond to environmental challenges in a sex- and time-dependent manner from prenatal stages, with major implications for our understanding of microglial contributions to health and disease.


Asunto(s)
Vida Libre de Gérmenes , Microbiota , Microglía/citología , Efectos Tardíos de la Exposición Prenatal/microbiología , Transcriptoma , Animales , Encéfalo/citología , Encéfalo/embriología , Encéfalo/metabolismo , Diferenciación Celular , Células Cultivadas , Ensamble y Desensamble de Cromatina , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Embarazo , Factores Sexuales
2.
Cell ; 172(1-2): 191-204.e10, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29224778

RESUMEN

Hematopoietic stem cell transplantation is a potential curative therapy for malignant and nonmalignant diseases. Improving the efficiency of stem cell collection and the quality of the cells acquired can broaden the donor pool and improve patient outcomes. We developed a rapid stem cell mobilization regimen utilizing a unique CXCR2 agonist, GROß, and the CXCR4 antagonist AMD3100. A single injection of both agents resulted in stem cell mobilization peaking within 15 min that was equivalent in magnitude to a standard multi-day regimen of granulocyte colony-stimulating factor (G-CSF). Mechanistic studies determined that rapid mobilization results from synergistic signaling on neutrophils, resulting in enhanced MMP-9 release, and unexpectedly revealed genetic polymorphisms in MMP-9 that alter activity. This mobilization regimen results in preferential trafficking of stem cells that demonstrate a higher engraftment efficiency than those mobilized by G-CSF. Our studies suggest a potential new strategy for the rapid collection of an improved hematopoietic graft.


Asunto(s)
Movilización de Célula Madre Hematopoyética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/inmunología , Adulto , Animales , Bencilaminas , Quimiocina CXCL2/farmacología , Ciclamas , Femenino , Células Madre Hematopoyéticas/efectos de los fármacos , Compuestos Heterocíclicos/farmacología , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Endogámicos ICR , Polimorfismo Genético
3.
Immunity ; 50(2): 390-402.e10, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30709741

RESUMEN

Neutrophils eliminate pathogens efficiently but can inflict severe damage to the host if they over-activate within blood vessels. It is unclear how immunity solves the dilemma of mounting an efficient anti-microbial defense while preserving vascular health. Here, we identify a neutrophil-intrinsic program that enabled both. The gene Bmal1 regulated expression of the chemokine CXCL2 to induce chemokine receptor CXCR2-dependent diurnal changes in the transcriptional and migratory properties of circulating neutrophils. These diurnal alterations, referred to as neutrophil aging, were antagonized by CXCR4 (C-X-C chemokine receptor type 4) and regulated the outer topology of neutrophils to favor homeostatic egress from blood vessels at night, resulting in boosted anti-microbial activity in tissues. Mice engineered for constitutive neutrophil aging became resistant to infection, but the persistence of intravascular aged neutrophils predisposed them to thrombo-inflammation and death. Thus, diurnal compartmentalization of neutrophils, driven by an internal timer, coordinates immune defense and vascular protection.


Asunto(s)
Vasos Sanguíneos/inmunología , Ritmo Circadiano/inmunología , Neutrófilos/inmunología , Fagocitosis/inmunología , Animales , Vasos Sanguíneos/metabolismo , Candida albicans/inmunología , Candida albicans/fisiología , Células Cultivadas , Senescencia Celular/inmunología , Quimiocina CXCL2/inmunología , Quimiocina CXCL2/metabolismo , Interacciones Huésped-Patógeno/inmunología , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila/inmunología , Neutrófilos/metabolismo , Neutrófilos/microbiología , Receptores CXCR4/inmunología , Receptores CXCR4/metabolismo , Factores de Tiempo
4.
Immunity ; 51(1): 155-168.e5, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31248780

RESUMEN

Genetic variation influences how the genome is interpreted in individuals and in mouse strains used to model immune responses. We developed approaches to utilize next-generation sequencing datasets to identify sequence variation in genes and enhancer elements in congenic and backcross mouse models. We defined genetic variation in the widely used B6-CD45.2 and B6.SJL-CD45.1 congenic model, identifying substantial differences in SJL genetic content retained in B6.SJL-CD45.1 strains on the basis of the vendor source of the mice. Genes encoding PD-1, CD62L, Bcl-2, cathepsin E, and Cxcr4 were within SJL genetic content in at least one vendor source of B6.SJL-CD45.1 mice. SJL genetic content affected enhancer elements, gene regulation, protein expression, and amino acid content in CD4+ T helper 1 cells, and mice infected with influenza showed reduced expression of Cxcr4 on B6.SJL-CD45.1 T follicular helper cells. These findings provide information on experimental variables and aid in creating approaches that account for genetic variables.


Asunto(s)
Catepsina E/metabolismo , Elementos de Facilitación Genéticos/genética , Inmunidad/genética , Receptores CXCR4/metabolismo , Células TH1/inmunología , Animales , Catepsina E/genética , Comercio , Regulación de la Expresión Génica , Antecedentes Genéticos , Variación Genética , Centro Germinal/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Endogamia , Antígenos Comunes de Leucocito/genética , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Modelos Animales , Receptores CXCR4/genética
5.
Immunity ; 48(2): 286-298.e6, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29396162

RESUMEN

Glucocorticoids are steroid hormones with strong anti-inflammatory and immunosuppressive effects that are produced in a diurnal fashion. Although glucocorticoids have the potential to induce interleukin-7 receptor (IL-7R) expression in T cells, whether they control T cell homeostasis and responses at physiological concentrations remains unclear. We found that glucocorticoid receptor signaling induces IL-7R expression in mouse T cells by binding to an enhancer of the IL-7Rα locus, with a peak at midnight and a trough at midday. This diurnal induction of IL-7R supported the survival of T cells and their redistribution between lymph nodes, spleen, and blood by controlling expression of the chemokine receptor CXCR4. In mice, T cell accumulation in the spleen at night enhanced immune responses against soluble antigens and systemic bacterial infection. Our results reveal the immunoenhancing role of glucocorticoids in adaptive immunity and provide insight into how immune function is regulated by the diurnal rhythm.


Asunto(s)
Ritmo Circadiano/fisiología , Glucocorticoides/farmacología , Receptores CXCR4/fisiología , Receptores de Interleucina-7/fisiología , Linfocitos T/inmunología , Animales , Células Cultivadas , Quimiocina CXCL12/biosíntesis , Femenino , Memoria Inmunológica , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Glucocorticoides/fisiología
6.
Mol Cell ; 74(4): 701-712.e9, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30948266

RESUMEN

Alternative 3' untranslated regions (3' UTRs) are widespread, but their functional roles are largely unknown. We investigated the function of the long BIRC3 3' UTR, which is upregulated in leukemia. The 3' UTR does not regulate BIRC3 protein localization or abundance but is required for CXCR4-mediated B cell migration. We established an experimental pipeline to study the mechanism of regulation and used mass spectrometry to identify BIRC3 protein interactors. In addition to 3'-UTR-independent interactors involved in known BIRC3 functions, we detected interactors that bind only to BIRC3 protein encoded from the mRNA with the long 3' UTR. They regulate several functions, including CXCR4 trafficking. We further identified RNA-binding proteins differentially bound to the alternative 3' UTRs and found that cooperative binding of Staufen and HuR mediates 3'-UTR-dependent complex formation. We show that the long 3' UTR is required for the formation of specific protein complexes that enable additional functions of BIRC3 protein beyond its 3'-UTR-independent functions.


Asunto(s)
Proteína 3 que Contiene Repeticiones IAP de Baculovirus/genética , Leucemia/genética , Complejos Multiproteicos/genética , Receptores CXCR4/genética , Regiones no Traducidas 3'/genética , Linfocitos B/metabolismo , Linfocitos B/patología , Proteína 3 que Contiene Repeticiones IAP de Baculovirus/química , Movimiento Celular/genética , Proteínas del Citoesqueleto/genética , Proteína 1 Similar a ELAV/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Leucemia/patología , Complejos Multiproteicos/química , Transporte de Proteínas , ARN Mensajero/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética
7.
Development ; 150(7)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36938965

RESUMEN

Blood vessels form elaborate networks that depend on tissue-specific signalling pathways and anatomical structures to guide their growth. However, it is not clear which morphogenetic principles organize the stepwise assembly of the vasculature. We therefore performed a longitudinal analysis of zebrafish caudal fin vascular assembly, revealing the existence of temporally and spatially distinct morphogenetic processes. Initially, vein-derived endothelial cells (ECs) generated arteries in a reiterative process requiring vascular endothelial growth factor (Vegf), Notch and cxcr4a signalling. Subsequently, veins produced veins in more proximal fin regions, transforming pre-existing artery-vein loops into a three-vessel pattern consisting of an artery and two veins. A distinct set of vascular plexuses formed at the base of the fin. They differed in their diameter, flow magnitude and marker gene expression. At later stages, intussusceptive angiogenesis occurred from veins in distal fin regions. In proximal fin regions, we observed new vein sprouts crossing the inter-ray tissue through sprouting angiogenesis. Together, our results reveal a surprising diversity among the mechanisms generating the mature fin vasculature and suggest that these might be driven by separate local cues.


Asunto(s)
Células Endoteliales , Pez Cebra , Animales , Pez Cebra/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Neovascularización Fisiológica , Venas/metabolismo
8.
Development ; 150(8)2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37039233

RESUMEN

The gastrointestinal tract is innervated by an intrinsic neuronal network, known as the enteric nervous system (ENS), and by extrinsic axons arising from peripheral ganglia. The nerve of Remak (NoR) is an avian-specific sacral neural crest-derived ganglionated structure that extends from the cloaca to the proximal midgut and, similar to the pelvic plexus, provides extrinsic innervation to the distal intestine. The molecular mechanisms controlling extrinsic nerve fiber growth into the gut is unknown. In vertebrates, CXCR4, a cell-surface receptor for the CXCL12 chemokine, regulates migration of neural crest cells and axon pathfinding. We have employed chimeric tissue recombinations and organ culture assays to study the role of CXCR4 and CXCL12 molecules in the development of colorectal innervation. CXCR4 is specifically expressed in nerve fibers arising from the NoR and pelvic plexus, while CXCL12 is localized to the hindgut mesenchyme and enteric ganglia. Overexpression of CXCL12 results in significantly enhanced axonal projections to the gut from the NoR, while CXCR4 inhibition disrupts nerve fiber extension, supporting a previously unreported role for CXCR4 and CXCL12 signaling in extrinsic innervation of the colorectum.


Asunto(s)
Sistema Nervioso Entérico , Tracto Gastrointestinal , Animales , Tracto Gastrointestinal/inervación , Colon , Neuronas/fisiología , Transducción de Señal , Cresta Neural
9.
Immunol Rev ; 307(1): 12-26, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34997597

RESUMEN

The random recombination of immunoglobulin V(D)J gene segments produces unique IgM antibodies that serve as the antigen receptor for each developing B cell. Hence, the newly formed B cell repertoire is comprised of a variety of specificities that display a range of reactivity with self-antigens. Newly generated IgM+ immature B cells that are non-autoreactive or that bind self-antigen with low avidity are licensed to leave the bone marrow with their intact antigen receptor and to travel via the blood to the peripheral lymphoid tissue for further selection and maturation. In contrast, clones with medium to high avidity for self-antigen remain within the marrow and undergo central tolerance, a process that revises their antigen receptor or eliminates the autoreactive B cell altogether. Thus, central B cell tolerance is critical for reducing the autoreactive capacity and avidity for self-antigen of our circulating B cell repertoire. Bone marrow cultures and mouse models have been instrumental for understanding the mechanisms that regulate the selection of bone marrow B cells. Here, we review recent studies that have shed new light on the contribution of the ERK, PI3K, and CXCR4 signaling pathways in the selection of mouse and human immature B cells that either bind or do not bind self-antigen.


Asunto(s)
Tolerancia Central , Receptores de Antígenos de Linfocitos B , Autoinmunidad , Linfocitos B , Células de la Médula Ósea , Humanos , Células Precursoras de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo
10.
Dev Biol ; 506: 52-63, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070699

RESUMEN

In vertebrates, the lateral body wall muscle formation is thought to be initiated by direct outgrowth of the dermomyotomes resulting in the elongation of the hypaxial myotomes. This contrasts with the formation of the muscles of the girdle, limbs and intrinsic tongue muscles, which originate from long-range migrating progenitors. Previous work shows that the migration of these progenitors requires CXCR4 which is specifically expressed in the migrating cells, but not in the dermomyotome. Here, we show that cells in the ventrolateral-lip (VLL) of the dermomyotome at the flank level express CXCR4 in a pattern consistent with that of Pax3 and MyoR. In ovo gain-of-function experiments using electroporation of SDF-1 constructs into the VLL resulted in increased expression of c-Met, Pax3 and MyoD. In contrast, a loss-of-function approach by implantation of CXCR4-inhibitor beads into the VLL of the flank region caused a reduction in the expression of these markers. These data show that CXCR4 is expressed in the VLL, and by experimentally manipulating the CXCR4/SDF-1 signaling, we demonstrate the importance of this axis in body wall muscle development.


Asunto(s)
Quimiocina CXCL12 , Músculo Esquelético , Receptores CXCR4 , Factores de Transcripción , Animales , Músculos Abdominales/metabolismo , Movimiento Celular , Quimiocina CXCL12/metabolismo , Mesodermo/metabolismo , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Pollos , Embrión de Pollo
11.
Development ; 149(23)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36468454

RESUMEN

Developmentally, the great vessels of the heart originate from the pharyngeal arch arteries (PAAs). During PAA vasculogenesis, PAA precursors undergo sequential cell fate decisions that are accompanied by proliferative expansion. However, how these two processes are synchronized remains poorly understood. Here, we find that the zebrafish chemokine receptor Cxcr4a is expressed in PAA precursors, and genetic ablation of either cxcr4a or the ligand gene cxcl12b causes PAA stenosis. Cxcr4a is required for the activation of the downstream PI3K/AKT cascade, which promotes not only PAA angioblast proliferation, but also differentiation. AKT has a well-known role in accelerating cell-cycle progression through the activation of cyclin-dependent kinases. Despite this, we demonstrate that AKT phosphorylates Etv2 and Scl, the key regulators of angioblast commitment, on conserved serine residues, thereby protecting them from ubiquitin-mediated proteasomal degradation. Altogether, our study reveals a central role for chemokine signaling in PAA vasculogenesis through orchestrating angioblast proliferation and differentiation.


Asunto(s)
Región Branquial , Pez Cebra , Animales , Pez Cebra/genética , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Arterias , Quimiocinas , División Celular
12.
FASEB J ; 38(15): e23851, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39108204

RESUMEN

Targeting cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) with specific antibody offers long-term benefits for cancer immunotherapy but can cause severe adverse effects in the heart. This study aimed to investigate the role of anti-CTLA-4 antibody in pressure overload-induced cardiac remodeling and dysfunction. Transverse aortic constriction (TAC) was used to induce cardiac hypertrophy and heart failure in mice. Two weeks after the TAC treatment, mice received anti-CTLA-4 antibody injection twice a week at a dose of 10 mg/kg body weight. The administration of anti-CTLA-4 antibody exacerbated TAC-induced decline in cardiac function, intensifying myocardial hypertrophy and fibrosis. Further investigation revealed that anti-CTLA-4 antibody significantly elevated systemic inflammatory factors levels and facilitated the differentiation of T helper 17 (Th17) cells in the peripheral blood of TAC-treated mice. Importantly, anti-CTLA-4 mediated differentiation of Th17 cells and hypertrophic phenotype in TAC mice were dramatically alleviated by the inhibition of interleukin-17A (IL-17A) by an anti-IL-17A antibody. Furthermore, the C-X-C motif chemokine receptor 4 (CXCR4) antagonist AMD3100, also reversed anti-CTLA-4-mediated cardiotoxicity in TAC mice. Overall, these results suggest that the administration of anti-CTLA-4 antibody exacerbates pressure overload-induced heart failure by activating and promoting the differentiation of Th17 cells. Targeting the CXCR4/Th17/IL-17A axis could be a potential therapeutic strategy for mitigating immune checkpoint inhibitors-induced cardiotoxicity.


Asunto(s)
Antígeno CTLA-4 , Insuficiencia Cardíaca , Ratones Endogámicos C57BL , Células Th17 , Animales , Células Th17/inmunología , Células Th17/metabolismo , Ratones , Antígeno CTLA-4/metabolismo , Antígeno CTLA-4/antagonistas & inhibidores , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Masculino , Interleucina-17/metabolismo , Receptores CXCR4/metabolismo , Receptores CXCR4/antagonistas & inhibidores , Diferenciación Celular , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/etiología
13.
Cell Mol Life Sci ; 81(1): 296, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992165

RESUMEN

Next to its classical role in MHC II-mediated antigen presentation, CD74 was identified as a high-affinity receptor for macrophage migration inhibitory factor (MIF), a pleiotropic cytokine and major determinant of various acute and chronic inflammatory conditions, cardiovascular diseases and cancer. Recent evidence suggests that CD74 is expressed in T cells, but the functional relevance of this observation is poorly understood. Here, we characterized the regulation of CD74 expression and that of the MIF chemokine receptors during activation of human CD4+ T cells and studied links to MIF-induced T-cell migration, function, and COVID-19 disease stage. MIF receptor profiling of resting primary human CD4+ T cells via flow cytometry revealed high surface expression of CXCR4, while CD74, CXCR2 and ACKR3/CXCR7 were not measurably expressed. However, CD4+ T cells constitutively expressed CD74 intracellularly, which upon T-cell activation was significantly upregulated, post-translationally modified by chondroitin sulfate and could be detected on the cell surface, as determined by flow cytometry, Western blot, immunohistochemistry, and re-analysis of available RNA-sequencing and proteomic data sets. Applying 3D-matrix-based live cell-imaging and receptor pathway-specific inhibitors, we determined a causal involvement of CD74 and CXCR4 in MIF-induced CD4+ T-cell migration. Mechanistically, proximity ligation assay visualized CD74/CXCR4 heterocomplexes on activated CD4+ T cells, which were significantly diminished after MIF treatment, pointing towards a MIF-mediated internalization process. Lastly, in a cohort of 30 COVID-19 patients, CD74 surface expression was found to be significantly upregulated on CD4+ and CD8+ T cells in patients with severe compared to patients with only mild disease course. Together, our study characterizes the MIF receptor network in the course of T-cell activation and reveals CD74 as a novel functional MIF receptor and MHC II-independent activation marker of primary human CD4+ T cells.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B , Linfocitos T CD4-Positivos , COVID-19 , Antígenos de Histocompatibilidad Clase II , Oxidorreductasas Intramoleculares , Activación de Linfocitos , Factores Inhibidores de la Migración de Macrófagos , SARS-CoV-2 , Humanos , Antígenos de Diferenciación de Linfocitos B/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase II/inmunología , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Factores Inhibidores de la Migración de Macrófagos/genética , Activación de Linfocitos/inmunología , SARS-CoV-2/metabolismo , SARS-CoV-2/inmunología , COVID-19/inmunología , COVID-19/metabolismo , COVID-19/patología , Oxidorreductasas Intramoleculares/metabolismo , Oxidorreductasas Intramoleculares/genética , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Movimiento Celular , Masculino , Femenino , Persona de Mediana Edad , Receptores Inmunológicos
14.
Cell Mol Life Sci ; 81(1): 132, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38472446

RESUMEN

P2Y11 is a G protein-coupled ATP receptor that activates IL-1 receptor (IL-1R) in a cyclic AMP dependent manner. In human macrophages, P2Y11/IL-1R crosstalk with CCL20 as a prime target is controlled by phosphodiesterase 4 (PDE4), which mediates breakdown of cyclic AMP. Here, we used gene expression analysis to identify activation of CXCR4 and CXCR7 as a hallmark of P2Y11 signaling. We found that PDE4 inhibition with rolipram boosts P2Y11/IL-1R-induced upregulation of CXCR7 expression and CCL20 production in an epidermal growth factor receptor dependent manner. Using an astrocytoma cell line, naturally expressing CXCR7 but lacking CXCR4, P2Y11/IL-1R activation effectively induced and CXCR7 agonist TC14012 enhanced CCL20 production even in the absence of PDE4 inhibition. Moreover, CXCR7 depletion by RNA interference suppressed CCL20 production. In macrophages, the simultaneous activation of P2Y11 and CXCR7 by their respective agonists was sufficient to induce CCL20 production with no need of PDE4 inhibition, as CXCR7 activation increased its own and eliminated CXCR4 expression. Finally, analysis of multiple CCL chemokines in the macrophage secretome revealed that CXCR4 inactivation and CXCR7 activation selectively enhanced P2Y11/IL-1R-mediated secretion of CCL20. Altogether, our data establish CXCR7 as an integral component of the P2Y11/IL-1R-initiated signaling cascade and CXCR4-associated PDE4 as a regulatory checkpoint.


Asunto(s)
Receptores CXCR4 , Transducción de Señal , Humanos , Línea Celular , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/farmacología , AMP Cíclico/metabolismo , Macrófagos/metabolismo , Receptores CXCR4/genética , Receptores Purinérgicos/metabolismo
15.
Med Res Rev ; 44(3): 1189-1220, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38178560

RESUMEN

Inflammation is the body's defense response to exogenous or endogenous stimuli, involving complex regulatory mechanisms. Discovering anti-inflammatory drugs with both effectiveness and long-term use safety is still the direction of researchers' efforts. The inflammatory pathway was initially identified to be involved in tumor metastasis and HIV infection. However, research in recent years has proved that the CXC chemokine receptor type 4 (CXCR4)/CXC motif chemokine ligand 12 (CXCL12) axis plays a critical role in the upstream of the inflammatory pathway due to its chemotaxis to inflammatory cells. Blocking the chemotaxis of inflammatory cells by CXCL12 at the inflammatory site may block and alleviate the inflammatory response. Therefore, developing CXCR4 antagonists has become a novel strategy for anti-inflammatory therapy. This review aimed to systematically summarize and analyze the mechanisms of action of the CXCR4/CXCL12 axis in more than 20 inflammatory diseases, highlighting its crucial role in inflammation. Additionally, the anti-inflammatory activities of CXCR4 antagonists were discussed. The findings might help generate new perspectives for developing anti-inflammatory drugs targeting the CXCR4/CXCL12 axis.


Asunto(s)
Infecciones por VIH , Receptores CXCR4 , Humanos , Infecciones por VIH/tratamiento farmacológico , Quimiocina CXCL12 , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Descubrimiento de Drogas
16.
Artículo en Inglés | MEDLINE | ID: mdl-39141567

RESUMEN

C-X-C motif chemokine ligand 14 (CXCL14) is expressed in the airway epithelial cells of patients with asthma. However, the mechanisms of CXCL14 secretion and its effects on asthma pathogenesis remain unclear. Here, we investigated the role of CXCL14 in allergic airway inflammation and its effects on eosinophil infiltration. Our findings showed that Alternaria alternata, a major environmental allergen, stimulated CXCL14 secretion from airway epithelial cells via reactive oxygen species (ROS) generated in mitochondrial oxidative phosphorylation (OXPHOS) complexes, especially in OXPHOS complex II. In vivo, in a mouse model of allergic airway inflammation, intranasal administration of anti-CXCL14 antibody suppressed eosinophil and dendritic cell infiltration into the airways and goblet cell hyperplasia. In vitro, in human eosinophil-like cells, CXCL14 promoted cell migration through C-X-C chemokine receptor type 4 (CXCR4) binding. Eosinophil CXCR4 expression was upregulated by Alternaria stimulation via ROS production. These findings suggest that the crosstalk between Alternaria-stimulated airway epithelial CXCL14 secretion and eosinophil CXCR4 upregulation plays an important role in eosinophil infiltration into the lungs during allergic airway inflammation. In summary, this study demonstrates that CXCL14 could be a therapeutic target for allergic airway inflammation.

17.
J Cell Mol Med ; 28(3): e18075, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38213100

RESUMEN

The prevalence of chronic kidney disease (CKD) is highly increasing. Renal fibrosis is a common pathological feature in various CKD. Previous studies showed tubular cell senescence is highly involved in the pathogenesis of renal fibrosis. However, the inducers of tubular senescence and the underlying mechanisms have not been fully investigated. C-X-C motif chemokine receptor 4 (CXCR4), a G-protein-coupled seven-span transmembrane receptor, increases renal fibrosis and plays an important role in tubular cell injury. Whereas, whether CXCR4 could induce tubular cell senescence and the detailed mechanisms have not studied yet. In this study, we adopted adriamycin nephropathy and 5/6 nephrectomy models, and cultured tubular cell line. Overexpression or knockdown of CXCR4 was obtained by injection of related plasmids. We identified CXCR4 increased in injury tubular cells. CXCR4 was expressed predominantly in renal tubular epithelial cells and co-localized with adipose differentiation-related protein (ADRP) as well as the senescence-related protein P16INK4A . Furthermore, we found overexpression of CXCR4 greatly induced the activation of ß-catenin, while knockdown of CXCR4 inhibited it. We also found that CXCR4 inhibited fatty acid oxidation and triggered lipid deposition in tubular cells. To inhibit ß-catenin by ICG-001, an inhibitor of ß-catenin, could significantly block CXCR4-suppressed fatty acid oxidation. Taken together, our results indicate that CXCR4 is a key mediator in tubular cell senescence and renal fibrosis. CXCR4 promotes tubular cell senescence and renal fibrosis by inducing ß-catenin and inhibiting fatty acid metabolism. Our findings provide a new theory for tubular cell injury in renal fibrosis.


Asunto(s)
Riñón , Receptores CXCR4 , Insuficiencia Renal Crónica , beta Catenina , beta Catenina/metabolismo , Senescencia Celular , Células Epiteliales/metabolismo , Ácidos Grasos/metabolismo , Fibrosis , Riñón/patología , Insuficiencia Renal Crónica/patología , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Animales , Ratones
18.
Dev Biol ; 495: 1-7, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36565839

RESUMEN

The cardiac neural crest is a subpopulation of cells arising from the caudal hindbrain. The delaminated cardiac neural crest cells migrate to the heart using the CXCR/SDF1 chemokine signaling system. These cells contribute to the formation of the cardiovascular system, including the septation of the outflow tract, which is unique to these cells. Here, we investigated the effect of ectopic expression of the cardiac neural crest gene MafB on trunk neural crest cells. First, we found that MafB has the potential to activate its own cis-regulatory element in enteric and trunk neural crest cells but not in cranial neural crest cells. Forced expression of two cardiac neural crest genes, Ets1 and Sox8, together with or without MafB, induced ectopic Sox10E2 enhancer activity in the trunk region. Finally, we uncovered that the expression of MafB, Ets1 and Sox8 can induce ectopic CXCR4 expression in the trunk neural crest cells, resulting in acquisition of responsiveness to the SDF1 signal. These results demonstrate that MafB, Ets1 and Sox8 are critical components for generation of the identity of the cardiac neural crest, especially the cell migration property.


Asunto(s)
Sistema Cardiovascular , Cresta Neural , Cresta Neural/metabolismo , Corazón , Movimiento Celular/genética , Regulación del Desarrollo de la Expresión Génica
19.
J Biol Chem ; 299(10): 105229, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37690681

RESUMEN

Chemokine receptors are members of the rhodopsin-like class A GPCRs whose signaling through G proteins drives the directional movement of cells in response to a chemokine gradient. Chemokine receptors CXCR4 and CCR5 have been extensively studied due to their roles in leukocyte development and inflammation and their status as coreceptors for HIV-1 infection, among other roles. Both receptors form dimers or oligomers of unclear function. While CXCR4 has been crystallized in a dimeric arrangement, available atomic resolution structures of CCR5 are monomeric. To investigate their dimerization interfaces, we used a bimolecular fluorescence complementation (BiFC)-based screen and deep mutational scanning to find mutations that change how the receptors self-associate, either via specific oligomer assembly or alternative mechanisms of clustering in close proximity. Many disruptive mutations promoted self-associations nonspecifically, suggesting they aggregated in the membrane. A mutationally intolerant region was found on CXCR4 that matched the crystallographic dimer interface, supporting this dimeric arrangement in living cells. A mutationally intolerant region was also observed on the surface of CCR5 by transmembrane helices 3 and 4. Mutations predicted from the scan to reduce BiFC were validated and were localized in the transmembrane domains as well as the C-terminal cytoplasmic tails where they reduced lipid microdomain localization. A mutation in the dimer interface of CXCR4 had increased binding to the ligand CXCL12 and yet diminished calcium signaling. There was no change in syncytia formation with cells expressing HIV-1 Env. The data highlight that multiple mechanisms are involved in self-association of chemokine receptor chains.


Asunto(s)
Modelos Moleculares , Mutación , Receptores CCR5 , Receptores CXCR4 , Dimerización , Mutagénesis , Receptores CCR5/química , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores CXCR4/química , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transducción de Señal , Humanos , Línea Celular , Estructura Terciaria de Proteína
20.
Infect Immun ; 92(2): e0028923, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38174929

RESUMEN

Brucella species are Gram-negative intracellular bacterial pathogens that cause the worldwide zoonotic disease brucellosis. Brucella can infect many mammals, including humans and domestic and wild animals. Brucella manipulates various host cellular processes to invade and multiply in professional and non-professional phagocytic cells. However, the host targets and their modulation by Brucella to facilitate the infection process remain obscure. Here, we report that the host ubiquitin-specific protease, USP8, negatively regulates the invasion of Brucella into macrophages through the plasma membrane receptor, CXCR4. Upon silencing or chemical inhibition of USP8, the membrane localization of the CXCR4 receptor was enriched, which augmented the invasion of Brucella into macrophages. Activation of USP8 through chemical inhibition of 14-3-3 protein affected the invasion of Brucella into macrophages. Brucella suppressed the expression of Usp8 at its early stage of infection in the infected macrophages. Furthermore, we found that only live Brucella could negatively regulate the expression of Usp8, suggesting the role of secreted effector protein of Brucella in modulating the gene expression. Subsequent studies revealed that the Brucella effector protein, TIR-domain containing protein from Brucella, TcpB, plays a significant role in downregulating the expression of Usp8 by targeting the cyclic-AMP response element-binding protein pathway. Treatment of mice with USP8 inhibitor resulted in enhanced survival of B. melitensis, whereas mice treated with CXCR4 or 14-3-3 antagonists showed a diminished bacterial load. Our experimental data demonstrate a novel role of Usp8 in the host defense against microbial intrusion. The present study provides insights into the microbial subversion of host defenses, and this information may ultimately help to develop novel therapeutic interventions for infectious diseases.


Asunto(s)
Brucella melitensis , Brucella , Brucelosis , Animales , Humanos , Ratones , Proteasas Ubiquitina-Específicas/metabolismo , Macrófagos/microbiología , Brucelosis/microbiología , Proteínas Bacterianas/genética , Mamíferos , Endopeptidasas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA