Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Annu Rev Entomol ; 69: 393-413, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37758221

RESUMEN

Mirids (Hemiptera: Heteroptera: Miridae) feed upon a wide variety of cultivated and wild plants and can be economically important crop pests. They have traditionally been perceived as innocuous herbivores in East Asia; however, population levels of various mirid species have dramatically increased over the past decades. High-profile pests such as Apolygus spp., Adelphocoris spp., and Lygus spp. are now widely distributed across the region, and their infestation pressure is associated with climate, agroecological conditions, and farming practices. This review outlines how an in-depth understanding of pest biology, a systems-level characterization of pest ecology, and a comprehensive evaluation of integrated pest management tactics have enabled sustainable management of mirids across crop boundaries and harvest cycles. This work underscores how more holistic, integrative research approaches can accelerate the implementation of area-wide management of generalist pests, effectively prevent pest population build-up and yield impact, and shrink the environmental footprint of agriculture. In addition to highlighting the merits of interdisciplinary systems approaches, we discuss prospects and challenges for the sustainable management of polyphagous mirid pests in landscape matrices.


Asunto(s)
Heterópteros , Animales , Ecología , Control de Plagas , Agricultura , Asia Oriental
2.
Mol Ecol ; : e17521, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39206937

RESUMEN

The diet breadth of generalist herbivores when compared to specialists tends to be associated with greater transcriptional plasticity. Here, we consider whether it may also contribute to variation in host range among two generalists with different levels of polyphagy. We examined two related polyphagous spider mites with different host ranges, Tetranychus urticae (1200 plants) and Tetranychus truncatus (90 plants). Data from multiple populations of both species domesticated on common beans and transferred to new plant hosts (cotton, cucumber, eggplant) were used to investigate transcriptional plasticity relative to population-based variation in gene expression. Compared to T. truncatus, T. urticae exhibited much higher transcriptional plasticity. Populations of this species also showed much more variable expression regulation in response to a plant host, particularly for genes related to detoxification, transport, and transcriptional factors. In response to the different plant hosts, both polyphagous species showed enriched processes of drug/xenobiotics metabolism, with T. urticae orchestrating a relatively broader array of biological pathways. Through co-expression network analysis, we identified gene modules associated with host plant response, revealing shared hub genes primarily involved in detoxification metabolism when both mites fed on the same plants. After silencing a shared hub CYP gene related to eggplant exposure, the performance of both species on the original bean host improved, but the fecundity of T. truncatus decreased when feeding on eggplant. The extensive transcriptomic variation shown by T. urticae might serve as a potential compensatory mechanism for a deficiency of hub genes in this species. This research points to nuanced differences in transcriptomic variability between generalist herbivores.

3.
BMC Genomics ; 22(1): 569, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301178

RESUMEN

BACKGROUND: The two-spotted spider mite, Tetranychus urticae, is a major agricultural pest with a cosmopolitan distribution, and its polyphagous habits provide a model for investigating herbivore-plant interactions. There are two body color forms of T. urticae with a different host preference. Comparative genomics and transcriptomics are used here to investigate differences in responses of the forms to host plants at the molecular level. Biological responses of the two forms sourced from multiple populations are also presented. RESULTS: We carried out principal component analysis of transcription changes in three red and three green T. urticae populations feeding on their original host (common bean), and three hosts to which they were transferred: cotton, cucumber and eggplant. There were differences among the forms in gene expression regardless of their host plant. In addition, different changes in gene expression were evident in the two forms when responding to the same host transfer. We further compared biological performance among populations of the two forms after feeding on each of the four hosts. Fecundity of 2-day-old adult females showed a consistent difference between the forms after feeding on bean. We produced a 90.1-Mb genome of the red form of T. urticae with scaffold N50 of 12.78 Mb. Transcriptional profiles of genes associated with saliva, digestion and detoxification showed form-dependent responses to the same host and these genes also showed host-specific expression effects. CONCLUSIONS: Our research revealed that forms of T. urticae differ in host-determined transcription responses and that there is form-dependent plasticity in the transcriptomic responses. These differences may facilitate the extreme polyphagy shown by spider mites, although fitness differences on hosts are also influenced by population differences unrelated to color form.


Asunto(s)
Tetranychidae , Animales , Femenino , Perfilación de la Expresión Génica , Genómica , Plantas , Tetranychidae/genética , Transcriptoma
4.
BMC Genomics ; 22(1): 186, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33726663

RESUMEN

BACKGROUND: K-mer-based methods have greatly advanced in recent years, largely driven by the realization of their biological significance and by the advent of next-generation sequencing. Their speed and their independence from the annotation process are major advantages. Their utility in the study of the mobilome has recently emerged and they seem a priori adapted to the patchy gene distribution and the lack of universal marker genes of viruses and plasmids. To provide a framework for the interpretation of results from k-mer based methods applied to archaea or their mobilome, we analyzed the 5-mer DNA profiles of close to 600 archaeal cells, viruses and plasmids. Archaea is one of the three domains of life. Archaea seem enriched in extremophiles and are associated with a high diversity of viral and plasmid families, many of which are specific to this domain. We explored the dataset structure by multivariate and statistical analyses, seeking to identify the underlying factors. RESULTS: For cells, the 5-mer profiles were inconsistent with the phylogeny of archaea. At a finer taxonomic level, the influence of the taxonomy and the environmental constraints on 5-mer profiles was very strong. These two factors were interdependent to a significant extent, and the respective weights of their contributions varied according to the clade. A convergent adaptation was observed for the class Halobacteria, for which a strong 5-mer signature was identified. For mobile elements, coevolution with the host had a clear influence on their 5-mer profile. This enabled us to identify one previously known and one new case of recent host transfer based on the atypical composition of the mobile elements involved. Beyond the effect of coevolution, extrachromosomal elements strikingly retain the specific imprint of their own viral or plasmid taxonomic family in their 5-mer profile. CONCLUSION: This specific imprint confirms that the evolution of extrachromosomal elements is driven by multiple parameters and is not restricted to host adaptation. In addition, we detected only recent host transfer events, suggesting the fast evolution of short k-mer profiles. This calls for caution when using k-mers for host prediction, metagenomic binning or phylogenetic reconstruction.


Asunto(s)
Archaea , Virus , Archaea/genética , Ecosistema , Filogenia , Plásmidos , Virus/genética
5.
Dev Biol ; 426(2): 188-193, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-26993591

RESUMEN

Completion of the Xenopus laevis genome sequence from inbred J strain animals has facilitated the generation of germline mutant X. laevis using targeted genome editing. In the last few years, numerous reports have demonstrated that TALENs are able to induce mutations in F0 Xenopus embryos, but none has demonstrated germline transmission of such mutations in X. laevis. In this report we used the oocyte host-transfer method to generate mutations in both tyrosinase homeologs and found highly-penetrant germline mutations; in contrast, embryonic injections yielded few germline mutations. We also compared the distribution of mutations in several F0 somatic tissues and germ cells and found that the majority of mutations in each tissue were different. These results establish that X. laevis J strain animals are very useful for generating germline mutations and that the oocyte host-transfer method is an efficient technique for generating mutations in both homeologs.


Asunto(s)
Albinismo/genética , Edición Génica , Mutación de Línea Germinal , Monofenol Monooxigenasa/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Animales , Secuencia de Bases , Cruzamientos Genéticos , Embrión no Mamífero , Femenino , Masculino , Microinyecciones , Monofenol Monooxigenasa/deficiencia , Mosaicismo , Oocitos/trasplante , Penetrancia , ARN Mensajero/administración & dosificación , ARN Mensajero/genética , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Proteínas de Xenopus/deficiencia
6.
Microbiol Spectr ; 12(2): e0514122, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38189277

RESUMEN

Methanosphaera stadtmanae was the sole Methanosphaera representative to be cultured and detected by molecular methods in the human gut microbiota, further associated with digestive and respiratory diseases, leaving unknown the actual diversity of human-associated Methanosphaera species. Here, a novel Methanosphaera species, Candidatus Methanosphaera massiliense (Ca. M. massiliense) sp. nov. was isolated by culture using a hydrogen- and carbon dioxide-free medium from one human feces sample. Ca. M. massiliense is a non-motile, 850 nm Gram-positive coccus autofluorescent at 420 nm. Whole-genome sequencing yielded a 29.7% GC content, gapless 1,785,773 bp genome sequence with an 84.5% coding ratio, encoding for alcohol and aldehyde dehydrogenases promoting the growth of Ca. M. massiliense without hydrogen. Screening additional mammal and human feces using a specific genome sequence-derived DNA-polymerase RT-PCR system yielded a prevalence of 22% in pigs, 12% in red kangaroos, and no detection in 149 other human samples. This study, extending the diversity of Methanosphaera in human microbiota, questions the zoonotic sources of Ca. M. massiliense and possible transfer between hosts.IMPORTANCEMethanogens are constant inhabitants in the human gut microbiota in which Methanosphaera stadtmanae was the only cultivated Methanosphaera representative. We grew Candidatus Methanosphaera massiliense sp. nov. from one human feces sample in a novel culture medium under a nitrogen atmosphere. Systematic research for methanogens in human and animal fecal samples detected Ca. M. massiliense in pig and red kangaroo feces, raising the possibility of its zoonotic acquisition. Host specificity, source of acquisition, and adaptation of methanogens should be further investigated.


Asunto(s)
Macropodidae , Methanobacteriaceae , Humanos , Animales , Porcinos , Macropodidae/genética , Methanobacteriaceae/genética , Metano , Heces , Hidrógeno , Etanol , Filogenia , ARN Ribosómico 16S/genética
7.
Proc Biol Sci ; 280(1766): 20131068, 2013 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-23843387

RESUMEN

Emergence of a new disease in a novel host is thought to be a rare outcome following frequent pathogen transfers between host species. However, few opportunities exist to examine whether disease emergence stems from a single successful pathogen transfer, and whether this successful lineage represents only one of several pathogen transfers between hosts. We examined the successful host transfer and subsequent evolution of the bacterial pathogen Mycoplasma gallisepticum, an emergent pathogen of house finches (Haemorhous (formerly Carpodacus) mexicanus). Our principal goals were to assess whether host transfer has been a repeated event between the original poultry hosts and house finches, whether only a single host transfer was ultimately responsible for the emergence of M. gallisepticum in these finches, and whether the spread of the pathogen from east to west across North America has resulted in spatial structuring in the pathogen. Using a phylogeny of M. gallisepticum based on 107 isolates from domestic poultry, house finches and other songbirds, we infer that the bacterium has repeatedly jumped between these two groups of hosts but with only a single lineage of M. gallisepticum persisting and evolving in house finches; bacterial evolution has produced monophyletic eastern and western North American subclades.


Asunto(s)
Enfermedades de las Aves/transmisión , Enfermedades Transmisibles Emergentes/veterinaria , Pinzones/microbiología , Interacciones Huésped-Patógeno , Mycoplasma gallisepticum/clasificación , Animales , Teorema de Bayes , Evolución Biológica , Enfermedades de las Aves/microbiología , ADN Bacteriano/química , ADN Bacteriano/aislamiento & purificación , Haplotipos , Infecciones por Mycoplasma/transmisión , Infecciones por Mycoplasma/veterinaria , Mycoplasma gallisepticum/genética , Mycoplasma gallisepticum/aislamiento & purificación , Filogenia , Aves de Corral/microbiología , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/transmisión
8.
Microorganisms ; 11(10)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37894172

RESUMEN

Spodoptera frugiperda (J.E.Smith) (Lepidoptera: Noctuidae) was first found in 2019 in Yunnan, China, and it was characterized as a corn strain; it was also found on rice strains there, and it damages rice in China, but little is known about the effect of host plant transfer on the intestinal microbiota and the activities of detoxification enzymes in the C-strain (corn strain) S. frugiperda. The intestinal microbiota and the protective enzyme activity of S. frugiperda that were transferred from rice plants were assessed, and the fourth generation of insects transferred from corn were studied; the gene types of S. frugiperda that were transferred from rice plants were tested using mitochondrial Tpi gene sequences. The results showed that the intestinal microbiota in the C-strain S. frugiperda were changed after the host transference, and the diversity and richness of the intestinal bacterial communities of the S. frugiperda feeding on rice were significantly reduced after the transfer of the host from corn. The predominant species of intestinal bacteria of the S. frugiperda on rice transferred from corn were Enterococcus and Enterobacter, with relative abundances of 28.7% and 66.68%; the predominant species of intestinal bacteria of the S. frugiperda that were transferred from rice and feeding on corn were Enterococcus (22.35%) and Erysipelatoclostridium (73.92%); and the predominant species of intestinal bacteria of S. frugiperda feeding on corn was Enterococcus, with a relative abundance of 61.26%. The CAT (catalase) activity of the S. frugiperda transferred from corn onto rice from corn was reduced, the POD (peroxidase) activity was significantly increased after the transfer from corn, and no significant variations were found for the SOD (superoxide dismutase), CarE (carboxylesterase), and GST (glutathione S-transferase) activities of S. frugiperda after the host plant transfer. The results showed that after feeding on rice, the activities of CAT and POD in the in S. frugiperda body changed in order to resist plant secondary metabolites from corn or rice, but there was no significant change in the detoxification enzymes in the body. In summary, switching the host plant between corn and rice induced variations in the intestinal microbiota in C-strain S. frugiperda owing to the strain difference between the C-strain and the R-strain (rice strain), and this was consistent with the results of the activities of detoxification enzymes. The results indicat that changes in intestinal microbiota and physiological enzymes may be important reasons for the adaptive capacity of C-strain S. frugiperda to rice.

9.
Front Microbiol ; 14: 1264788, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075877

RESUMEN

Background: Gut microbes play an important role in the adaptation of insects. Polyphagous insects usually undergo changes in gut microbiota after host shift. The Bactrocera cucurbitae have a wide range of hosts, but the dynamic of gut microorganisms during host shift have not been thoroughly investigated. To understand the role of gut microbes in insect adaptation, it is necessary to study the dynamics of insect gut microorganisms during host transfer. Methods: Using Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) and its four hosts as study subjects, we investigated the dynamics of gut microbes during host transfer and the effects of different hosts on the gut microbial composition of B. cucurbitae. Results: The results showed that the Chao1 index of B. cucurbitae decreased significantly during host transfer, and the intestinal microorganisms were significantly affected by the original host, host, and generations. Furthermore, predicated changes in the abundance of secondary metabolite pathways after host transfer suggested that microorganisms may play an important role in the degradation of secondary metabolites, among which Providencia and Morganella have important functions in the gut of B. cucurbitae. Conclusion: This implied that microorganisms play a function in the host transfer process of B. cucurbitae and may be an important cofactor in the adaptation of B. cucurbitae to different hosts and environments, providing new research ideas for the future control of B. cucurbitae.

10.
Methods Mol Biol ; 1920: 1-16, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30737682

RESUMEN

The early development of Xenopus critically depends on maternal components stored in the egg. Because important events such as axis formation are triggered immediately after fertilization, it is often desirable to perturb gene function before this occurs. Oocytes can be experimentally manipulated in vitro, prior to maturation, and subsequently fertilized or otherwise activated to develop, and then observed for any embryological defects. Available methods for fertilizing cultured oocytes include in vitro fertilization following oocyte vitelline envelope removal, nuclear transplantation, intracytoplasmic sperm injection, and transferring oocytes to the body cavity of ovulating host females (host transfer). This chapter outlines this host transfer method, which has been used to elucidate basic mechanisms of axis formation, germ-layer induction, and primordial germ cell specification. Methods for obtaining, culturing, transferring, and fertilizing Xenopus oocytes are described. This method has typically been used to alter maternal gene function by antisense oligonucleotide-mediated mRNA knockdown, but is also useful for mRNA or protein overexpression, including the expression of genome-editing reagents prior to fertilization.


Asunto(s)
Edición Génica , Regulación del Desarrollo de la Expresión Génica , Oocitos/citología , Oocitos/metabolismo , ARN Mensajero/genética , Animales , Técnicas de Cultivo de Célula , Separación Celular/métodos , Células Cultivadas , Femenino , Fertilización In Vitro , ARN Mensajero/metabolismo , Xenopus laevis
11.
Environ Entomol ; 44(2): 379-91, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26313192

RESUMEN

Local adaptation, an important phenomenon in ecological speciation, occurs in Myzus persicae (Sulzer), with the tobacco-adapted line proposed as a subspecies. Recent studies showed that temperature could alter the selection strength and direction in host-herbivore interactions. To understand the formation of host-adapted speciation and the effects of temperature on host adaptation, the parthenogenetic progeny of an M. persicae egg were conditioned on two hosts for >10 generations. Then, their life table parameters were studied after reciprocal transfer under a temperature gradient. The results showed that aphids habituated on tobacco (Nicotiana tabacum L.) and rape (Brassica napus L.) had different optimal temperatures, including different upper thresholds of development and reproduction on original and alternative hosts. After habituation for >10 generations, local adaptation of aphids on the host of origin was formed, which was observed as the better performance of the native aphids compared with the foreign ones. The M. persicae that habituated on rape appeared more generalized to the host plants than the aphids that habituated on tobacco. The adaptation patterns of green peach aphids on two hosts varied differentially according to temperature, which verified the temperature-mediated effects of host selection on herbivores, implying the presence of a demographic basis of aphid seasonal migration.


Asunto(s)
Áfidos/fisiología , Brassica napus/fisiología , Herbivoria , Nicotiana/fisiología , Adaptación Fisiológica , Animales , Áfidos/crecimiento & desarrollo , Femenino , Masculino , Ninfa/crecimiento & desarrollo , Ninfa/fisiología , Temperatura
12.
Biochimie ; 119: 231-43, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26296474

RESUMEN

Despite being an important and inseparable part of the biosphere, viruses are too often overlooked in several life sciences, including evolutionary biology, systems biology, and non-marine ecology. In this review, a protein domain-based view of viral proteomes, the proteomes of other organisms and the overlap between them is presented. The data show that in many viral species, viral proteins are not very well annotated with protein domains. Compared with viral proteomes, cellular proteomes are covered quite uniformly with respect to protein domains and show higher coverage. A tremendous number of virally coded domains exist; in fact, the number of protein domains in the characterised virosphere is approaching that found in Archaea, a well-accepted superkingdom. Proteins encoded by viruses contain virosphere-specific domains (i.e., not found in cellular proteomes) and/or many domains shared by viral and cellular proteomes. Virosphere-specific domains are structurally peculiar with respect to different structural measures, making them a clear source of structural and functional novelty. Viral families with RNA genomes tend to harbour more virosphere-specific domains than other viruses. Interestingly, host range preferences of different viral classes are, for the most part, not reflected by domains shared between viruses and different superkingdoms. The role of viruses in the genesis of the cellular domain repertoire is reviewed to bring them more confidently and firmly into the larger biological picture.


Asunto(s)
Evolución Molecular , Genoma Viral , Interacciones Huésped-Patógeno , Modelos Genéticos , Proteínas Virales/química , Animales , Bases de Datos de Proteínas , Humanos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Homología Estructural de Proteína , Proteínas Virales/genética , Proteínas Virales/metabolismo
13.
Biol Open ; 4(2): 180-5, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25596277

RESUMEN

Zinc-finger nucleases, transcription activator-like effector nucleases (TALENs) and the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) system are potentially powerful tools for producing tailor-made knockout animals. However, their mutagenic activity is not high enough to induce mutations at all loci of a target gene throughout an entire tadpole. In this study, we present a highly efficient method for introducing gene modifications at almost all target sequences in randomly selected embryos. The gene modification activity of TALEN is enhanced by adopting the host-transfer technique. In our method, the efficiency is further improved by injecting TALEN mRNAs fused to the 3'UTR of the Xenopus DEADSouth gene into oocytes, which are then transferred into a host female frog, where they are ovulated and fertilized. The addition of the 3'UTR of the DEADSouth gene promotes mRNA translation in the oocytes and increases the expression of TALEN proteins to near-maximal levels three hours post fertilization (hpf). In contrast, TALEN mRNAs without this 3'UTR are translated infrequently in oocytes. Our data suggest that genomic DNA is more sensitive to TALEN proteins from fertilization to the midblastula (MBT) stage. Our method works by increasing the levels of TALEN proteins during the pre-MBT stages.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA