Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.711
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 29(3): 671-685, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38177350

RESUMEN

Acquired brain injury (ABI), such as traumatic brain injury and stroke, is a leading cause of disability worldwide, resulting in debilitating acute and chronic symptoms, as well as an increased risk of developing neurological and neurodegenerative disorders. These symptoms can stem from various neurophysiological insults, including neuroinflammation, oxidative stress, imbalances in neurotransmission, and impaired neuroplasticity. Despite advancements in medical technology and treatment interventions, managing ABI remains a significant challenge. Emerging evidence suggests that psychedelics may rapidly improve neurobehavioral outcomes in patients with various disorders that share physiological similarities with ABI. However, research specifically focussed on psychedelics for ABI is limited. This narrative literature review explores the neurochemical properties of psychedelics as a therapeutic intervention for ABI, with a focus on serotonin receptors, sigma-1 receptors, and neurotrophic signalling associated with neuroprotection, neuroplasticity, and neuroinflammation. The promotion of neuronal growth, cell survival, and anti-inflammatory properties exhibited by psychedelics strongly supports their potential benefit in managing ABI. Further research and translational efforts are required to elucidate their therapeutic mechanisms of action and to evaluate their effectiveness in treating the acute and chronic phases of ABI.


Asunto(s)
Lesiones Encefálicas , Alucinógenos , Plasticidad Neuronal , Humanos , Alucinógenos/farmacología , Alucinógenos/uso terapéutico , Plasticidad Neuronal/efectos de los fármacos , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Animales , Receptores de Serotonina/metabolismo , Receptores de Serotonina/efectos de los fármacos , Receptores sigma/metabolismo , Receptor Sigma-1 , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35101976

RESUMEN

Blood-brain barrier (BBB) breakdown and inflammation occurring at the BBB have a key, mainly a deleterious role in the pathophysiology of ischemic stroke. Neddylation is a ubiquitylation-like pathway that is critical in various cellular functions by conjugating neuronal precursor cell-expressed developmentally down-regulated protein 8 (NEDD8) to target proteins. However, the roles of neddylation pathway in ischemic stroke remain elusive. Here, we report that NEDD8 conjugation increased during acute phase after ischemic stroke and was present in intravascular and intraparenchymal neutrophils. Inhibition of neddylation by MLN4924, also known as pevonedistat, inactivated cullin-RING E3 ligase (CRL), and reduced brain infarction and improved functional outcomes. MLN4924 treatment induced the accumulation of the CRL substrate neurofibromatosis 1 (NF1). By using virus-mediated NF1 silencing, we show that NF1 knockdown abolished MLN4924-dependent inhibition of neutrophil trafficking. These effects were mediated through activation of endothelial P-selectin and intercellular adhesion molecule-1 (ICAM-1), and blocking antibodies against P-selectin or anti-ICAM-1 antibodies reversed NF1 silencing-induced increase in neutrophil infiltration in MLN4924-treated mice. Furthermore, we found that NF1 silencing blocked MLN4924-afforded BBB protection and neuroprotection through activation of protein kinase C δ (PKCδ), myristoylated alanine-rich C-kinase substrate (MARCKS), and myosin light chain (MLC) in cerebral microvessels after ischemic stroke, and treatment of mice with the PKCδ inhibitor rottlerin reduced this increased BBB permeability. Our study demonstrated that increased neddylation promoted neutrophil trafficking and thus exacerbated injury of the BBB and stroke outcomes. We suggest that the neddylation inhibition may be beneficial in ischemic stroke.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Ciclopentanos/farmacología , Proteína NEDD8/metabolismo , Proteínas del Tejido Nervioso , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Pirimidinas/farmacología , Ubiquitina-Proteína Ligasas , Animales , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/enzimología , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/enzimología , Masculino , Ratones , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo
3.
Stroke ; 55(3): 725-734, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38406851

RESUMEN

BACKGROUND: Remote secondary neurodegeneration is associated with poststroke cognitive impairment (PSCI). Dl-3-n-butylphthalide (NBP) improves PSCI clinically. However, whether it ameliorates PSCI by alleviating secondary neurodegeneration remains uncertain. Nonhuman primates provide more relevant models than rodents for human stroke and PSCI. This study investigated the effects of NBP on PSCI and secondary neurodegeneration in cynomolgus monkeys after permanent left middle cerebral artery occlusion (MCAO). METHODS: Thirteen adult male cynomolgus monkeys were randomly assigned to sham (n=4), MCAO+placebo (n=5), and MCAO+NBP groups (n=4). The MCAO+placebo and MCAO+NBP groups received saline and NBP injections intravenously, respectively, starting at 6-hour postsurgery for 2 weeks, followed by soybean oil and NBP orally, respectively, for 10 weeks after MCAO. Infarct size was assessed at week 4 by magnetic resonance imaging. Working memory and executive function were evaluated dynamically using the delayed response task and object retrieval detour task, respectively. Neuron loss, glia proliferation, and neuroinflammation in the ipsilateral dorsal lateral prefrontal cortex, thalamus, and hippocampus were analyzed by immunostaining 12 weeks after MCAO. RESULTS: Infarcts were located in the left middle cerebral artery region, apart from the ipsilateral dorsal lateral prefrontal cortex, thalamus, or hippocampus, with no significant difference between the MCAO+placebo and MCAO+NBP group. Higher success in delayed response task was achieved at weeks 4, 8, and 12 after NBP compared with placebo treatments (P<0.05), but not in the object retrieval detour task (all P>0.05). More neurons and less microglia, astrocytes, CD68-positive microglia, tumor necrosis factor-α, and inducible NO synthase were observed in the ipsilateral dorsal lateral prefrontal cortex and thalamus after 12 weeks of NBP treatment (P<0.05), but not in the hippocampus (P>0.05). CONCLUSIONS: Our findings indicate that NBP improves working memory by alleviating remote secondary neurodegeneration and neuroinflammation in the ipsilateral dorsal lateral prefrontal cortex and thalamus after MCAO in cynomolgus monkeys.


Asunto(s)
Benzofuranos , Lesiones Encefálicas , Neoplasias Encefálicas , Fármacos Neuroprotectores , Accidente Cerebrovascular , Humanos , Animales , Masculino , Macaca fascicularis , Memoria a Corto Plazo , Enfermedades Neuroinflamatorias , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/tratamiento farmacológico , Lesiones Encefálicas/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Hipocampo/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
4.
J Neuroinflammation ; 21(1): 116, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702778

RESUMEN

BACKGROUND: Subarachnoid hemorrhage (SAH), a severe subtype of stroke, is characterized by notably high mortality and morbidity, largely due to the lack of effective therapeutic options. Although the neuroprotective potential of PPARg and Nrf2 has been recognized, investigative efforts into oroxin A (OA), remain limited in preclinical studies. METHODS: SAH was modeled in vivo through filament perforation in male C57BL/6 mice and in vitro by exposing HT22 cells to hemin to induce neuronal damage. Following the administration of OA, a series of methods were employed to assess neurological behaviors, brain water content, neuronal damage, cell ferroptosis, and the extent of neuroinflammation. RESULTS: The findings indicated that OA treatment markedly improved survival rates, enhanced neurological functions, mitigated neuronal death and brain edema, and attenuated the inflammatory response. These effects of OA were linked to the suppression of microglial activation. Moreover, OA administration was found to diminish ferroptosis in neuronal cells, a critical factor in early brain injury (EBI) following SAH. Further mechanistic investigations uncovered that OA facilitated the translocation of nuclear factor erythroid 2-related factor 2 (Nrf-2) from the cytoplasm to the nucleus, thereby activating the Nrf2/GPX4 pathway. Importantly, OA also upregulated the expression of FSP1, suggesting a significant and parallel protective effect against ferroptosis in EBI following SAH in synergy with GPX4. CONCLUSION: In summary, this research indicated that the PPARg activator OA augmented the neurological results in rodent models and diminished neuronal death. This neuroprotection was achieved primarily by suppressing neuronal ferroptosis. The underlying mechanism was associated with the alleviation of cellular death through the Nrf2/GPX4 and FSP1/CoQ10 pathways.


Asunto(s)
Ferroptosis , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Hemorragia Subaracnoidea , Animales , Hemorragia Subaracnoidea/metabolismo , Hemorragia Subaracnoidea/patología , Hemorragia Subaracnoidea/complicaciones , Ferroptosis/efectos de los fármacos , Ferroptosis/fisiología , Ratones , Masculino , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/etiología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Lesiones Encefálicas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología
5.
J Neurosci Res ; 102(4): e25329, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38597144

RESUMEN

There is a need for new treatments to reduce brain injuries derived from neonatal hypoxia/ischemia. The only viable option used in the clinic today in infants born at term is therapeutic hypothermia, which has a limited efficacy. Treatments with exogenous RNase have shown great promise in a range of different adult animal models including stroke, ischemia/reperfusion injury, or experimental heart transplantation, often by conferring vascular protective and anti-inflammatory effects. However, any neuroprotective function of RNase treatment in the neonate remains unknown. Using a well-established model of neonatal hypoxic/ischemic brain injury, we evaluated the influence of RNase treatment on RNase activity, gray and white matter tissue loss, blood-brain barrier function, as well as levels and expression of inflammatory cytokines in the brain up to 6 h after the injury using multiplex immunoassay and RT-PCR. Intraperitoneal treatment with RNase increased RNase activity in both plasma and cerebropinal fluids. The RNase treatment resulted in a reduction of brain tissue loss but did not affect the blood-brain barrier function and had only a minor modulatory effect on the inflammatory response. It is concluded that RNase treatment may be promising as a neuroprotective regimen, whereas the mechanistic effects of this treatment appear to be different in the neonate compared to the adult and need further investigation.


Asunto(s)
Lesiones Encefálicas , Hipoxia-Isquemia Encefálica , Fármacos Neuroprotectores , Animales , Recién Nacido , Lactante , Humanos , Animales Recién Nacidos , Ribonucleasas/metabolismo , Ribonucleasas/farmacología , Lesiones Encefálicas/tratamiento farmacológico , Encéfalo/metabolismo , Isquemia/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Modelos Animales de Enfermedad
6.
J Pharmacol Exp Ther ; 388(2): 313-324, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37770202

RESUMEN

Sex differences are common in human epilepsy. Although men are more susceptible to seizure than women, the mechanisms underlying sex-specific vulnerabilities to seizure are unclear. The organophosphate (OP) diisopropylfluorophosphate (DFP) is known to cause neurotoxicity and status epilepticus (SE), a serious neurologic condition that causes prolonged seizures and brain damage. Current therapies for OP poisoning and SE do not consider neuronal variations between male and female brains. Therefore, we investigated sex-dependent differences in electrographic seizure activity and neuronal injury using the DFP model of refractory SE in rats. Electroencephalogram recordings were used to monitor DFP-induced SE, and the extent of brain injury was determined using fluoro-jade-B staining to detect cellular necrosis. After DFP exposure, we observed striking sex-dependent differences in SE and seizure activity patterns as well as protective responses to midazolam treatment. Following acute DFP exposure, male animals displayed more severe SE with intense epileptiform spiking and greater mortality than females. In contrast, we observed significantly more injured cells and cellular necrosis in the hippocampus and other brain regions in females than in males. We also observed extensive neuronal injury in the somatosensory cortex of males. The anticonvulsant effect of midazolam against SE was limited in this model and found to be similar in males and females. However, unlike males, females exhibited substantially more protection against neuronal damage after midazolam treatment. Overall, these results demonstrate significant sex-dependent differences in DFP-induced refractory SE and neuronal damage patterns, suggesting that it may be possible to develop sex-specific neuroprotective strategies for OP intoxication and refractory SE. SIGNIFICANCE STATEMENT: Sex-dependent differences in neurotoxicity and status epilepticus (SE) are key biological variables after organophosphate (OP) exposure. Here, we investigated sex-dependent differences in SE and brain injury after acute diisopropylfluorophosphate exposure. Male rats had more severe SE and less survival than females, while females had more neuronal damage. Females had more neuroprotection to midazolam than males, while both sexes had similar but partial anticonvulsant effects. These findings suggest that a sex-specific therapeutic approach may prevent neurological complications of OP-induced SE.


Asunto(s)
Lesiones Encefálicas , Intoxicación por Organofosfatos , Estado Epiléptico , Humanos , Femenino , Masculino , Ratas , Animales , Benzodiazepinas/farmacología , Anticonvulsivantes/efectos adversos , Midazolam/farmacología , Isoflurofato/farmacología , Organofosfatos/farmacología , Caracteres Sexuales , Ratas Sprague-Dawley , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Encéfalo , Intoxicación por Organofosfatos/tratamiento farmacológico , Lesiones Encefálicas/tratamiento farmacológico , Necrosis/tratamiento farmacológico
7.
J Pharmacol Exp Ther ; 388(2): 432-450, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37739807

RESUMEN

Acute exposure to nerve agents induces a peripheral cholinergic crisis and prolonged status epilepticus (SE), causing death or long-term brain damage. To provide preclinical data pertinent to the protection of infants and newborns, we compared the antiseizure and neuroprotective effects of treating soman-induced SE with midazolam (MDZ) versus tezampanel (LY293558) in combination with caramiphen (CRM) in 12- and 7-day-old rats. The anticonvulsants were administered 1 hour after soman exposure; neuropathology data were collected up to 6 months postexposure. In both ages, the total duration of SE within 24 hours after soman exposure was significantly shorter in the LY293558 plus CRM groups compared with the MDZ groups. Neuronal degeneration was substantial in the MDZ-treated groups but absent or minimal in the groups treated with LY293558 plus CRM. Loss of neurons and interneurons in the basolateral amygdala and CA1 hippocampal area was significant in the MDZ-treated groups but virtually absent in the LY293558 plus CRM groups. Atrophy of the amygdala and hippocampus occurred only in MDZ-treated groups. Neuronal/interneuronal loss and atrophy of the amygdala and hippocampus deteriorated over time. Reduction of inhibitory activity in the basolateral amygdala and increased anxiety were found only in MDZ groups. Spontaneous recurrent seizures developed in the MDZ groups, deteriorating over time; a small percentage of rats from the LY293558 plus CRM groups also developed seizures. These results suggest that brain damage can be long lasting or permanent if nerve agent-induced SE in infant victims is treated with midazolam at a delayed timepoint after SE onset, whereas antiglutamatergic treatment with tezampanel and caramiphen provides significant neuroprotection. SIGNIFICANCE STATEMENT: To protect the brain and the lives of infants in a mass exposure to nerve agents, an anticonvulsant treatment must be administered that will effectively stop seizures and prevent neuropathology, even if offered with a relative delay after seizure onset. The present study shows that midazolam, which was recently approved by the Food and Drug Administration for the treatment of nerve agent-induced status epilepticus, is not an effective neuroprotectant, whereas brain damage can be prevented by targeting glutamate receptors.


Asunto(s)
Lesiones Encefálicas , Ciclopentanos , Isoquinolinas , Agentes Nerviosos , Fármacos Neuroprotectores , Soman , Estado Epiléptico , Tetrazoles , Humanos , Recién Nacido , Ratas , Animales , Agentes Nerviosos/toxicidad , Midazolam/farmacología , Midazolam/uso terapéutico , Soman/toxicidad , Neuroprotección , Ratas Sprague-Dawley , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Anticonvulsivantes/efectos adversos , Lesiones Encefálicas/inducido químicamente , Lesiones Encefálicas/tratamiento farmacológico , Encéfalo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Atrofia/tratamiento farmacológico
8.
J Pediatr ; 266: 113879, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38142044

RESUMEN

OBJECTIVE: To test feasibility and safety of administering sildenafil in neonates with neonatal encephalopathy (NE), developing brain injury despite therapeutic hypothermia (TH). STUDY DESIGN: We performed a randomized, double-blind, placebo-controlled phase Ib clinical trial between 2016 and 2019 in neonates with moderate or severe NE, displaying brain injury on day-2 magnetic resonance imaging (MRI) despite TH. Neonates were randomized (2:1) to 7-day sildenafil or placebo (2 mg/kg/dose enterally every 12 hours, 14 doses). Outcomes included feasibility and safety (primary outcomes), pharmacokinetics (secondary), and day-30 neuroimaging and 18-month neurodevelopment assessments (exploratory). RESULTS: Of the 24 enrolled neonates, 8 were randomized to sildenafil and 3 to placebo. A mild decrease in blood pressure was reported in 2 of the 8 neonates after initial dose, but not with subsequent doses. Sildenafil plasma steady-state concentration was rapidly reached, but decreased after TH discontinuation. Twelve percent of neonates (1/8) neonates died in the sildenafil group and 0% (0/3) in the placebo group. Among surviving neonates, partial recovery of injury, fewer cystic lesions, and less brain volume loss on day-30 magnetic resonance imaging were noted in 71% (5/7) of the sildenafil group and in 0% (0/3) of the placebo group. The rate of death or survival to 18 months with severe neurodevelopmental impairment was 57% (4/7) in the sildenafil group and 100% (3/3) in the placebo group. CONCLUSIONS: Sildenafil was safe and well-absorbed in neonates with NE treated with TH. Optimal dosing needs to be established. Evaluation of a larger number of neonates through subsequent phases II and III trials is required to establish efficacy. CLINICAL TRIAL REGISTRATION: ClinicalTrials.govNCT02812433.


Asunto(s)
Asfixia Neonatal , Lesiones Encefálicas , Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Enfermedades del Recién Nacido , Recién Nacido , Humanos , Citrato de Sildenafil/efectos adversos , Asfixia/complicaciones , Estudios de Factibilidad , Asfixia Neonatal/terapia , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/tratamiento farmacológico , Enfermedades del Recién Nacido/terapia , Hipoxia-Isquemia Encefálica/terapia , Hipotermia Inducida/métodos , Método Doble Ciego
9.
Cell Mol Neurobiol ; 44(1): 36, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637346

RESUMEN

Surgical brain injury (SBI), induced by neurosurgical procedures or instruments, has not attracted adequate attention. The pathophysiological process of SBI remains sparse compared to that of other central nervous system diseases thus far. Therefore, novel and effective therapies for SBI are urgently needed. In this study, we found that neutrophil extracellular traps (NETs) were present in the circulation and brain tissues of rats after SBI, which promoted neuroinflammation, cerebral edema, neuronal cell death, and aggravated neurological dysfunction. Inhibition of NETs formation by peptidylarginine deiminase (PAD) inhibitor or disruption of NETs with deoxyribonuclease I (DNase I) attenuated SBI-induced damages and improved the recovery of neurological function. We show that SBI triggered the activation of cyclic guanosine monophosphate-adenosine monophosphate synthase stimulator of interferon genes (cGAS-STING), and that inhibition of the cGAS-STING pathway could be beneficial. It is worth noting that DNase I markedly suppressed the activation of cGAS-STING, which was reversed by the cGAS product cyclic guanosine monophosphate-adenosine monophosphate (cGMP-AMP, cGAMP). Furthermore, the neuroprotective effect of DNase I in SBI was also abolished by cGAMP. NETs may participate in the pathophysiological regulation of SBI by acting through the cGAS-STING pathway. We also found that high-dose vitamin C administration could effectively inhibit the formation of NETs post-SBI. Thus, targeting NETs may provide a novel therapeutic strategy for SBI treatment, and high-dose vitamin C intervention may be a promising translational therapy with an excellent safety profile and low cost.


Asunto(s)
Lesiones Encefálicas , Trampas Extracelulares , Animales , Ratas , Encéfalo , Lesiones Encefálicas/tratamiento farmacológico , Ácido Ascórbico , Desoxirribonucleasa I/farmacología
10.
Cell Commun Signal ; 22(1): 383, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075489

RESUMEN

BACKGROUND: Acute hypobaric hypoxia-induced brain injury has been a challenge in the health management of mountaineers; therefore, new neuroprotective agents are urgently required. Meldonium, a well-known cardioprotective drug, has been reported to have neuroprotective effects. However, the relevant mechanisms have not been elucidated. We hypothesized that meldonium may play a potentially novel role in hypobaric hypoxia cerebral injury. METHODS: We initially evaluated the neuroprotection efficacy of meldonium against acute hypoxia in mice and primary hippocampal neurons. The potential molecular targets of meldonium were screened using drug-target binding Huprot™ microarray chip and mass spectrometry analyses after which they were validated with surface plasmon resonance (SPR), molecular docking, and pull-down assay. The functional effects of such binding were explored through gene knockdown and overexpression. RESULTS: The study clearly shows that pretreatment with meldonium rapidly attenuates neuronal pathological damage, cerebral blood flow changes, and mitochondrial damage and its cascade response to oxidative stress injury, thereby improving survival rates in mice brain and primary hippocampal neurons, revealing the remarkable pharmacological efficacy of meldonium in acute high-altitude brain injury. On the one hand, we confirmed that meldonium directly interacts with phosphoglycerate kinase 1 (PGK1) to promote its activity, which improved glycolysis and pyruvate metabolism to promote ATP production. On the other hand, meldonium also ameliorates mitochondrial damage by PGK1 translocating to mitochondria under acute hypoxia to regulate the activity of TNF receptor-associated protein 1 (TRAP1) molecular chaperones. CONCLUSION: These results further explain the mechanism of meldonium as an energy optimizer and provide a strategy for preventing acute hypobaric hypoxia brain injury at high altitudes.


Asunto(s)
Lesiones Encefálicas , Fosfoglicerato Quinasa , Animales , Fosfoglicerato Quinasa/metabolismo , Fosfoglicerato Quinasa/genética , Ratones , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Masculino , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/metabolismo , Hipoxia/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
11.
Neurochem Res ; 49(8): 2131-2147, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38822984

RESUMEN

BACKGROUND: Sepsis-associated encephalopathy (SAE) develops in 30-70% of hospitalized patients with sepsis. In intensive care units (ICUs), propofol is often administered to ensure an appropriate level of sedation in mechanically ventilated patients. Ferroptosis is a newly identified mode of cellular death characterized by the peroxidation of membrane lipids and excessive iron. This study was conducted to explore the interplay between propofol, sepsis, and ferroptosis. METHODS: An acute systemic inflammatory model was constructed via the intraperitoneal administration of lipopolysaccharide (LPS). Nissl and Fluoro-Jade C (FJC) staining were employed to display neuronal damage and degeneration. Western blotting and immunofluorescence (IF) staining of Bax and Bcl-2 were used to confirm the neural apoptosis. QPCR of cytokines and DHE staining were used to indicate neuroinflammation. To validate ferroptosis, we assessed the content of malondialdehyde (MDA), GSH, and tissue iron, accompanied by transcription level of CHAC1, PTGS2 and GPX4. Additionally, we examined the content of acyl-CoA synthetase long-chain family member 4 (ACSL4), xCT (SLC7A11, solute carrier family 7 member 11), and glutathione peroxidase 4 (GPX4). The IF staining of Iba1-labeled microglia and GFAP-marked astrocytes were used to measure the gliosis. Erastin was pre-pretreated to confirm the anti-ferroptotic capability of propofol. ML385 was preconditioned to explore the role of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in propofol-repressed ferroptosis. RESULTS: Propofol dose-dependently inhibited the decrease of Nissl-positive neurons and the increase of FJC-stained neurons in septic hippocampus and cortex. Neural cytokines, oxidative stress, apoptosis and gliosis were reduced by propofol. Propofol repressed the level of MDA, iron, CHAC1, PTGS2, ACLS4 and restored the content of GSH, GPX4, xCT, Nrf2 and HO-1, thus inhibiting sepsis-induced ferroptosis. All protections from propofol could be reversed by eratsin and ML385 pretreatment. CONCLUSION: Propofol protected against sepsis-induced brain damage, neuroinflammation, neuronal apoptosis and gliosis through the activation of the Nrf2/HO-1 axis to combat ferroptosis.


Asunto(s)
Ferroptosis , Factor 2 Relacionado con NF-E2 , Propofol , Ferroptosis/efectos de los fármacos , Ferroptosis/fisiología , Propofol/farmacología , Propofol/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Sepsis/metabolismo , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Lipopolisacáridos , Encefalopatía Asociada a la Sepsis/metabolismo , Encefalopatía Asociada a la Sepsis/tratamiento farmacológico , Encefalopatía Asociada a la Sepsis/prevención & control , Hemo-Oxigenasa 1/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Proteínas de la Membrana/metabolismo , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/tratamiento farmacológico , Coenzima A Ligasas , Sistema de Transporte de Aminoácidos y+
12.
Anesthesiology ; 140(4): 742-751, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38190220

RESUMEN

BACKGROUND: Severe traumatic brain injury is a leading cause of morbidity and mortality among young people around the world. Prehospital care focuses on the prevention and treatment of secondary brain injury and commonly includes tracheal intubation after induction of general anesthesia. The choice of induction agent in this setting is controversial. This study therefore investigated the association between the chosen induction medication etomidate versus S(+)-ketamine and the 30-day mortality in patients with severe traumatic brain injury who received prehospital airway management in the Netherlands. METHODS: This study is a retrospective analysis of the prospectively collected observational data of the Brain Injury: Prehospital Registry of Outcomes, Treatments and Epidemiology of Cerebral Trauma (BRAIN-PROTECT) cohort study. Patients with suspected severe traumatic brain injury who were transported to a participating trauma center and who received etomidate or S(+)-ketamine for prehospital induction of anesthesia for advanced airway management were included. Statistical analyses were performed with multivariable logistic regression and inverse probability of treatment weighting analysis. RESULTS: In total, 1,457 patients were eligible for analysis. No significant association between the administered induction medication and 30-day mortality was observed in unadjusted analyses (32.9% mortality for etomidate versus 33.8% mortality for S(+)-ketamine; P = 0.716; odds ratio, 1.04; 95% CI, 0.83 to 1.32; P = 0.711), as well as after adjustment for potential confounders (odds ratio, 1.08; 95% CI, 0.67 to 1.73; P = 0.765; and risk difference 0.017; 95% CI, -0.051 to 0.084; P = 0.686). Likewise, in planned subgroup analyses for patients with confirmed traumatic brain injury and patients with isolated traumatic brain injury, no significant differences were found. Consistent results were found after multiple imputations of missing data. CONCLUSIONS: The analysis found no evidence for an association between the use of etomidate or S(+)-ketamine as an anesthetic agent for intubation in patients with traumatic brain injury and mortality after 30 days in the prehospital setting, suggesting that the choice of induction agent may not influence the patient mortality rate in this population.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Servicios Médicos de Urgencia , Etomidato , Ketamina , Adolescente , Humanos , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Estudios de Cohortes , Etomidato/uso terapéutico , Intubación Intratraqueal/métodos , Ketamina/uso terapéutico , Estudios Retrospectivos , Estudios Observacionales como Asunto
13.
Mol Biol Rep ; 51(1): 236, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285214

RESUMEN

BACKGROUND: Early brain injury (EBI) is the vital factor in determining the outcome of subarachnoid hemorrhage (SAH). Schizandrin A (Sch A), the bioactive ingredient extracted from Schisandra chinensis, has been proved to exert beneficial effects in multiple human diseases. However, the effect of Sch A on SAH remains unknown. The current study was designed to explored role and mechanism of Sch A in the pathophysiological process of EBI following SAH. METHOD: A total of 74 male C57BL/6 J mice were subjected to endovascular perforation to establish the SAH model. Different dosages of Sch A were administrated post-modeling. The post-modeling assessments included neurological test, brain water content, RT-PCR, immunofluorescence, Nissl staining. Oxygenated hemoglobin was introduced into microglia to establish a SAH model in vitro. RESULT: Sch A significantly alleviated SAH-induced brain edema and neurological impairment. Moreover, application of Sch A remarkably inhibited SAH-induced neuroinflammation, evidenced by the decreased microglial activation and downregulated TNF-α, IL-1ß and IL-6 and expression. Additionally, Sch A, both in vivo and in vitro, protected neurons against SAH-induced inflammatory injury. Mechanismly, administration of Sch A inhibited miR-155/NF-κB axis and attenuated neuroinflammation, as well as alleviating neuronal injury. CONCLUSION: Our data suggested that Sch A could attenuated EBI following SAH via modulating neuroinflammation. The anti-inflammatory effect was exerted, at least partly through the miR-155/NF-κB axis, which may shed light on a possible therapeutic target for SAH.


Asunto(s)
Lesiones Encefálicas , Ciclooctanos , Lignanos , MicroARNs , Compuestos Policíclicos , Hemorragia Subaracnoidea , Ratones , Humanos , Animales , Masculino , Ratones Endogámicos C57BL , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/tratamiento farmacológico , FN-kappa B , Enfermedades Neuroinflamatorias , Lesiones Encefálicas/tratamiento farmacológico , MicroARNs/genética
14.
Mol Biol Rep ; 51(1): 366, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409545

RESUMEN

BACKGROUND: Subarachnoid hemorrhage (SAH) is one of the most prevalent brain injuries in humans which has poor prognosis and high mortality rates. Due to several medical or surgical treatment methods, a gold standard method doesn't exist for SAH treatment. Piceatannol (PCN), a natural analog of resveratrol, was reported to reduce inflammation and apoptosis promising a wide range of therapeutic alternatives. In this study, we aimed to investigate the effects of PCN in an experimental SAH model. The alleviating effects of PCN in the hippocampus in an experimental SAH model were investigated for the first time. METHODS AND RESULTS: In this study, 27 Wistar Albino male rats (200-300 g; 7-8 week) were used. Animals were divided into three groups; SHAM, SAH, and SAH + PCN. SAH model was created with 120 µl of autologous arterial tail blood to prechiasmatic cisterna. 30 mg/kg PCN was administered intraperitoneally at 1st h after SAH. Neurological evaluation was performed with Garcia's score. RT-PCR was performed for gene expression levels in the hippocampus. Pyknosis, edema, and apoptosis were evaluated by H&E and TUNEL staining. Our results indicated that PCN administration reduced apoptosis (P < 0.01), cellular edema, and pyknosis (P < 0.05) in the hippocampus after SAH. Moreover, PCN treatment significantly decreased the expression levels of TNF-α (P < 0.01), IL-6 (P < 0.05), NF-κB (P < 0.05), and Bax (P < 0.05) in the hippocampus. CONCLUSIONS: Our results demonstrated that PCN might be a potential therapeutic adjuvant agent for the treatment of early brain injury (EBI) following SAH. Further studies are required to clarify the underlying mechanisms and treatment options of SAH.


Asunto(s)
Lesiones Encefálicas , Fármacos Neuroprotectores , Estilbenos , Hemorragia Subaracnoidea , Humanos , Ratas , Animales , Ratas Sprague-Dawley , Hemorragia Subaracnoidea/tratamiento farmacológico , Hemorragia Subaracnoidea/metabolismo , Ratas Wistar , Lesiones Encefálicas/tratamiento farmacológico , Apoptosis , Edema/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
15.
Crit Care ; 28(1): 314, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304944

RESUMEN

AIMS: Cerebral complications after cardiac arrest (CA) remain a major problem worldwide. The aim was to test the effects of sodium-ß-hydroxybutyrate (SBHB) infusion on brain injury in a clinically relevant swine model of CA. RESULTS: CA was electrically induced in 20 adult swine. After 10 min, cardiopulmonary resuscitation was performed for 5 min. After return of spontaneous circulation (ROSC), the animals were randomly assigned to receive an infusion of balanced crystalloid (controls, n = 11) or SBHB (theoretical osmolarity 1189 mOsm/l, n = 8) for 12 h. Multimodal neurological and cardiovascular monitoring were implemented in all animals. Nineteen of the 20 animals achieved ROSC. Blood sodium concentrations, osmolarity and circulating KBs were higher in the treated animals than in the controls. SBHB infusion was associated with significantly lower plasma biomarkers of brain injury at 6 (glial fibrillary acid protein, GFAP and neuron specific enolase, NSE) and 12 h (neurofilament light chain, NFL, GFAP and NSE) compared to controls. The amplitude of the stereoelectroencephalograph (sEEG) increased in treated animals after ROSC compared to controls. Cerebral glucose uptake was lower in treated animals. CONCLUSIONS: In this experimental model, SBHB infusion after resuscitated CA was associated with reduced circulating markers of cerebral injury and increased sEEG amplitude.


Asunto(s)
Biomarcadores , Reanimación Cardiopulmonar , Modelos Animales de Enfermedad , Paro Cardíaco , Animales , Paro Cardíaco/tratamiento farmacológico , Paro Cardíaco/complicaciones , Paro Cardíaco/terapia , Porcinos , Biomarcadores/sangre , Biomarcadores/análisis , Reanimación Cardiopulmonar/métodos , Oxibato de Sodio/farmacología , Oxibato de Sodio/uso terapéutico , Oxibato de Sodio/administración & dosificación , Lesiones Encefálicas/tratamiento farmacológico , Ácido 3-Hidroxibutírico/sangre , Masculino
16.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 19-27, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38372118

RESUMEN

Sepsis is regarded as an inflammatory syndrome that consists of complex biochemical and pathophysiological dysregulation, brought on by endogenous factors in response to systemic infection. Sepsis can cause short- and long-term cerebral injury. Cerium oxide nanoparticles (CeO2 NPs) have been reported to possess both anti-inflammatory and antioxidative properties. The current study investigated the potential role of cerium oxide nanoparticles in the management of sepsis-induced brain injury. To achieve this target, forty male albino rats were divided into 4 groups, ten rats each. Group (i) set as a shame group. Group (ii) set as shame group administrated CeO2 NPs. Group (iii) septic group treated with saline and Group (iv) septic group treated with CeO2 NPs. The sepsis model in rats was induced by cecal ligation and puncture (CLP). Results showed CeO2 NPs administration resulted in significant improvement in the survival rate of rats, suppression in serum sepsis biomarkers (CRP, ESM-1, PCT and D- dimer), amelioration of brain inflammatory mediators (TNF-α- IL-6, NF-kB and LTB4) as well as apoptotic markers (Cas-3 and BAX). Furthermore, immunomodulation of miRNAs expression (155,124 and 146a). These findings demonstrate a promising pivotal role of CeO2 NPs treatment in alleviating the deleterious effects induced by sepsis in the brain.


Asunto(s)
Lesiones Encefálicas , Cerio , MicroARNs , Nanopartículas , Sepsis , Ratas , Masculino , Animales , FN-kappa B/metabolismo , MicroARNs/genética , Nanopartículas/química , Lesiones Encefálicas/tratamiento farmacológico , Sepsis/complicaciones , Sepsis/tratamiento farmacológico
17.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 220-225, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38814212

RESUMEN

This study explored the impact of penehyclidine hydrochloride on cognitive function in rats with brain injury. Sprague-Dawley rats (n=36) were randomly assigned to sham-operation, model, and penehyclidine hydrochloride groups. Rats in the sham-operation group underwent craniotomy, while the model and penehyclidine hydrochloride groups received brain injury models and interventions with normal saline and penehyclidine hydrochloride, respectively. Specimens were obtained two weeks post-intervention. Neurological deficits were evaluated using Zea-Longa scores, and memory was assessed with the Morris water maze test. ELISA determined brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) content. mRNA expressions of BDNF and NGF were assessed via qPCR, and phosphorylated CREB (p-CREB) protein expression was measured by Western blotting. Compared to the sham-operation group, both model and penehyclidine hydrochloride groups showed increased Zea-Longa scores. Escape latencies were longer and platform crossings were fewer in model and penehyclidine hydrochloride groups compared to the sham-operation group, but penehyclidine hydrochloride demonstrated a shorter latency and more platform crossings than the model group. BDNF and NGF content decreased in model and penehyclidine hydrochloride groups compared to the sham-operation group, with an increase in the penehyclidine hydrochloride group compared to the model group. mRNA expression levels declined in model and penehyclidine hydrochloride groups but were higher in the latter. p-CREB protein expression was lower in model and penehyclidine hydrochloride groups compared to the sham-operation group but higher in the penehyclidine hydrochloride group than the model group. Penehyclidine hydrochloride exhibited neuroprotective effects by upregulating the cAMP/CREB signaling pathway, improving cognitive function in rats with brain injury.


Asunto(s)
Lesiones Encefálicas , Factor Neurotrófico Derivado del Encéfalo , Cognición , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , AMP Cíclico , Quinuclidinas , Ratas Sprague-Dawley , Transducción de Señal , Animales , Transducción de Señal/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Quinuclidinas/farmacología , Quinuclidinas/uso terapéutico , Cognición/efectos de los fármacos , Masculino , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , AMP Cíclico/metabolismo , Ratas , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/genética , Fosforilación/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Modelos Animales de Enfermedad
18.
J Biochem Mol Toxicol ; 38(7): e23760, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38953502

RESUMEN

Cyclophosphamide (CP) is an antineoplastic drug widely used in chemotherapy. Curcumin (CUR) and piperine (PP) show a protective effect on neurodegenerative and neurological diseases. This research was designed to measure several biochemical parameters in the brain tissue of CP-applied rats to investigate the impact of combined CUR-PP administration. The study evaluated six groups of eight rats: Group 1 was the control; Groups 2 and 3 were administered 200 or 300 mg/kg CUR-PP via oral gavage; Group 4 received only 200 mg/kg CP on day 1; Groups 5 and 6 received CP + CUR-PP for 7 days. Data from all parameters indicated that CP caused brain damage. Phosphorylated TAU (pTAU), amyloid-beta peptide 1-42 (Aß1-42), glutamate (GLU), and gamma amino butyric acid (GABA) parameters were the same in Groups 4, 5, and 6. On the other hand, 8-hydroxy-2-deoxyguanosine (8-OHdG), nitric oxide (NO), interleukin-6 (IL-6), nuclear factor kappa beta (NF-kß), malondialdehyde (MDA), and tumor necrosis factor-alpha (TNF-α) levels in the CP + CUR-PP groups were lower than those in the CP group (p < 0.05). However, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and reduced glutathione (GSH) parameters were higher in the CP + CUR-PP groups compared to the CP group (p < 0.05). It is thought that the similarity of Groups 5 and 6 with Group 4 in Aß1-42, pTAU, GLU, and GABA parameters hinder the determination of treatment protection however, they might have a therapeutic effect if the applied dose or study duration were changed. This study attempted to evaluate the effects of a CUR-PP combination on CP-induced brain damage in rats by measuring biochemical parameters and performing histopathological examinations. Based on the findings, this CUR-PP combination could be considered an alternative medicine option in cases with conditions similar to those evaluated in this study.


Asunto(s)
Alcaloides , Benzodioxoles , Lesiones Encefálicas , Curcumina , Ciclofosfamida , Piperidinas , Alcamidas Poliinsaturadas , Animales , Alcamidas Poliinsaturadas/farmacología , Benzodioxoles/farmacología , Curcumina/farmacología , Piperidinas/farmacología , Alcaloides/farmacología , Ratas , Ciclofosfamida/toxicidad , Ciclofosfamida/efectos adversos , Masculino , Lesiones Encefálicas/inducido químicamente , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Lesiones Encefálicas/prevención & control , Ratas Wistar , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Estrés Oxidativo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología
19.
J Biochem Mol Toxicol ; 38(9): e23843, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39253885

RESUMEN

Hypertensive intracerebral hemorrhage (HICH) is a destructive disease with high mortality, incidence, and disability. Asiaticoside (AC) is a triterpenoid derivative that has demonstrated to exert a protective effect on neuron and blood vessel. To investigate the function and potential mechanism of AC on HICH. Human brain microvascular endothelial cells (hBMECs) were treated with 20 U/mL thrombin for 24 h to establish the HICH model in vitro, and AC with the concentration of 1, 2 and 4 µM were used to incubate hBMECs. The effect and potential mechanism of AC on HICH were investigated by using cell counting kit-8, flow cytometry, tube forming assays, vascular permeability experiments and western blot assays. In vivo, rats were injected with 20 µL hemoglobin with a concentration of 150 mg/mL, and then intragastrically administrated with 1.25, 2.5 and 5 mg/kg AC. Behavioral tests, brain water content measurement, hematoxylin-eosin (HE) staining, terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling assays, and western blot were used to assess the effect and potential mechanism of AC on HICH. AC (at 2 and 4 µM) improved the proliferation, apoptosis, angiogenesis and vascular permeability in thrombin-induced hBMECs (p < 0.05). Besides, AC (2.5 and 5 mg/kg) ameliorated behavioral scores, brain water content, pathological lesion, apoptosis and the expression of vascular permeability-related proteins in rats with HICH (p < 0.05). In addition, AC elevated the expression of PI3K/AKT pathway after HICH both in cell and animal models (p < 0.05). Application of LY294002, an inhibitor of PI3K/AKT pathway, reversed the ameliorative effect of AC on the proliferation, apoptosis, angiogenesis and vascular permeability in thrombin-induced hBMECs (p < 0.05). AC reduced brain damage by increasing the expression of the PI3K/AKT pathway after HICH.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Transducción de Señal , Triterpenos , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Humanos , Triterpenos/farmacología , Hemorragia Intracraneal Hipertensiva/tratamiento farmacológico , Hemorragia Intracraneal Hipertensiva/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Apoptosis/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Lesiones Encefálicas/prevención & control , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patología , Hemorragia Cerebral/complicaciones
20.
Acta Pharmacol Sin ; 45(2): 248-267, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37833536

RESUMEN

There are few effective and safe neuroprotective agents for the treatment of ischemic stroke currently. Caffeic acid is a phenolic acid that widely exists in a number of plant species. Previous studies show that caffeic acid ameliorates brain injury in rats after cerebral ischemia/reperfusion. In this study we explored the protective mechanisms of caffeic acid against oxidative stress and ferroptosis in permanent cerebral ischemia. Ischemia stroke was induced on rats by permanent middle cerebral artery occlusion (pMCAO). Caffeic acid (0.4, 2, 10 mg·kg-1·d-1, i.g.) was administered to the rats for 3 consecutive days before or after the surgery. We showed that either pre-pMCAO or post-pMCAO administration of caffeic acid (2 mg·kg-1·d-1) effectively reduced the infarct volume and improved neurological outcome. The therapeutic time window could last to 2 h after pMCAO. We found that caffeic acid administration significantly reduced oxidative damage as well as neuroinflammation, and enhanced antioxidant capacity in pMCAO rat brain. We further demonstrated that caffeic acid down-regulated TFR1 and ACSL4, and up-regulated glutathione production through Nrf2 signaling pathway to resist ferroptosis in pMCAO rat brain and in oxygen glucose deprivation/reoxygenation (OGD/R)-treated SK-N-SH cells in vitro. Application of ML385, an Nrf2 inhibitor, blocked the neuroprotective effects of caffeic acid in both in vivo and in vitro models, evidenced by excessive accumulation of iron ions and inactivation of the ferroptosis defense system. In conclusion, caffeic acid inhibits oxidative stress-mediated neuronal death in pMCAO rat brain by regulating ferroptosis via Nrf2 signaling pathway. Caffeic acid might serve as a potential treatment to relieve brain injury after cerebral ischemia. Caffeic acid significantly attenuated cerebral ischemic injury and resisted ferroptosis both in vivo and in vitro. The regulation of Nrf2 by caffeic acid initiated the transcription of downstream target genes, which were shown to be anti-inflammatory, antioxidative and antiferroptotic. The effects of caffeic acid on neuroinflammation and ferroptosis in cerebral ischemia were explored in a primary microglia-neuron coculture system. Caffeic acid played a role in reducing neuroinflammation and resisting ferroptosis through the Nrf2 signaling pathway, which further suggested that caffeic acid might be a potential therapeutic method for alleviating brain injury after cerebral ischemia.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Ácidos Cafeicos , Ferroptosis , Fármacos Neuroprotectores , Daño por Reperfusión , Ratas , Animales , Ratas Sprague-Dawley , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedades Neuroinflamatorias , Transducción de Señal , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Lesiones Encefálicas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Antioxidantes/farmacología , Daño por Reperfusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA